解:(1)設(shè)等差數(shù)列{b
n}的公差為d(d≠0),
,因?yàn)閎
1=1,
則
,
即2+(n-1)d=4k+2k(2n-1)d.
整理得,(4k-1)dn+(2k-1)(2-d)=0.…(4分)
因?yàn)閷?duì)任意正整數(shù)n上式恒成立,
則
,
解得
. …(6分)
故數(shù)列{b
n}的通項(xiàng)公式是b
n=2n-1.…(7分)
(2)由已知,當(dāng)n=1時(shí),c
13=S
12=c
12.
因?yàn)閏
1>0,所以c
1=1. …(8分)
當(dāng)n≥2時(shí),c
13+c
23+c
33+…+c
n3=S
n2,
c
13+c
23+c
33+…+c
n-13=S
n-12.
兩式相減,得c
n3=S
n2-S
n-12=(S
n-S
n-1)(S
n+S
n-1)=c
n•(S
n+S
n-1).
因?yàn)閏
n>0,所以c
n2=S
n+S
n-1=2S
n-c
n.…(10分)
顯然c
1=1適合上式,
所以當(dāng)n≥2時(shí),c
n-12=2S
n-1-c
n-1.
于是c
n2-c
n-12=2(S
n-S
n-1)-c
n+c
n-1
=2c
n-c
n+c
n-1=c
n+c
n-1.
因?yàn)閏
n+c
n-1>0,則c
n-c
n-1=1,
所以數(shù)列{c
n}是首項(xiàng)為1,公差為1的等差數(shù)列.
所以
不為常數(shù),
故數(shù)列{c
n}不是“科比數(shù)列”. …(14分)
分析:(1)設(shè)等差數(shù)列{b
n}的公差為d(d≠0),
,因?yàn)閎
1=1,所以(4k-1)dn+(2k-1)(2-d)=0.因?yàn)閷?duì)任意正整數(shù)n上式恒成立,則
,由此能求出數(shù)列{b
n}的通項(xiàng)公式.
(2)由已知,當(dāng)n=1時(shí),c
13=S
12=c
12.因?yàn)閏
1>0,所以c
1=1.當(dāng)n≥2時(shí),c
13+c
23+c
33+…+c
n3=S
n2,c
13+c
23+c
33+…+c
n-13=S
n-12.所以c
n3=S
n2-S
n-12=(S
n-S
n-1)(S
n+S
n-1)=c
n•(S
n+S
n-1).由此能推導(dǎo)出數(shù)列{c
n}是首項(xiàng)為1,公差為1的等差數(shù)列.從而得到數(shù)列{c
n}不是“科比數(shù)列”.
點(diǎn)評(píng):本題首先考查等差數(shù)列、等比數(shù)列的基本量、通項(xiàng),結(jié)合含兩個(gè)變量的不等式的處理問(wèn)題,對(duì)數(shù)學(xué)思維的要求比較高,要求學(xué)生理解“存在”、“恒成立”,以及運(yùn)用一般與特殊的關(guān)系進(jìn)行否定,本題有一定的探索性.綜合性強(qiáng),難度大,計(jì)算繁瑣易出錯(cuò).解題時(shí)要細(xì)心,注意培養(yǎng)計(jì)算能力.