如圖所示,四棱錐P-ABCD的底面ABCD是邊長為1的菱形,∠BCD=60°,E是CD的中點(diǎn),PA⊥底面ABCD,PA=
(I)證明:平面PBE⊥平面PAB;
(Ⅱ)求二面角A-BE-P的大小.
【答案】分析:(I)連接BD,由已知中四棱錐P-ABCD的底面ABCD是邊長為1的菱形,∠BCD=60°,E是CD的中點(diǎn),PA⊥底面ABCD,我們可得BE⊥AB,PA⊥BE,由線面垂直的判定定理可得BE⊥平面PAB,再由面面平行的判定定理可得平面PBE⊥平面PAB;
(II)由(I)知,BE⊥平面PAB,進(jìn)而PB⊥BE,可得∠PBA是二面角A-BE-P的平面角.解Rt△PAB即可得到二面角A-BE-P的大小.
解答:證明:(I)如圖所示,連接BD,由ABCD是菱形且∠BCD=60°知,
△BCD是等邊三角形.因?yàn)镋是CD的中點(diǎn),所以BE⊥CD,又AB∥CD,所以BE⊥AB,
又因?yàn)镻A⊥平面ABCD,BE?平面ABCD,
所以PA⊥BE,而PA∩AB=A,因此 BE⊥平面PAB.
又BE?平面PBE,所以平面PBE⊥平面PAB.
解:(II)由(I)知,BE⊥平面PAB,PB?平面PAB,所以PB⊥BE.
又AB⊥BE,所以∠PBA是二面角A-BE-P的平面角.
在Rt△PAB中,..
故二面角A-BE-P的大小為60°.
點(diǎn)評:本題考查的知識點(diǎn)是與二面角有關(guān)的立體幾何綜合題,平面與平面垂直的判定,其中(I)的關(guān)鍵是熟練掌握線線垂直、線面垂直及面面垂直之間的轉(zhuǎn)換,(II)的關(guān)鍵是構(gòu)造出∠PBA是二面角A-BE-P的平面角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,四棱錐P-ABCD的底面為直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E為AB的中點(diǎn).
(Ⅰ)求證:平面PDE⊥平面PAC;
(Ⅱ)求二面角C-PD-E的大小;
(Ⅲ)求點(diǎn)B到平面PDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,四棱錐P-ABCD的底面是一個(gè)矩形,AB=3.AD=1.又PA⊥AB,PA=4,
∠PAD=60°.求:
(1)四棱錐P-ABCD的體積.
(2)二面角P-BC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,四棱錐P-ABCD的底面ABCD是半徑為R的圓的內(nèi)接四邊形,其中BD是圓的直徑,∠ABD=60°,∠BDC=45°,△ADP~△BAD.
(1)求線段PD的長;
(2)若PC=
11
R
,求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•煙臺一模)如圖所示,四棱錐P-ABCD中,ABCD為正方形,PA⊥AD,E,F(xiàn),G分別是線段PA,PD,CD的中點(diǎn).
求證:
(1)BC∥平面EFG;
(2)平面EFG⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四棱錐P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,PA⊥底面ABCD,E為PC的中點(diǎn),PA=AD=AB=1.
(1)證明:EB∥平面PAD;
(2)證明:BE⊥平面PDC;
(3)求三棱錐B-PDC的體積V.

查看答案和解析>>

同步練習(xí)冊答案