某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如下表
商店名稱 A B C D
E
銷售額x(千萬元) 3 5 6 7 9
利潤額y(百萬元) 2 3 3 4 5
(1)畫出散點圖.觀察散點圖,說明兩個變量有怎樣的相關(guān)性.
(2)用最小二乘法計算利潤額y對銷售額x的回歸直線方程.
(3)當銷售額為4(千萬元)時,估計利潤額的大。
精英家教網(wǎng)
分析:(1)畫出散點圖如圖;
(2)先求出x,y的均值,再由公式
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-
b
.
x
 計算出系數(shù)的值,即可求出線性回歸方程;
(3)將零售店某月銷售額為4千萬元代入線性回歸方程,計算出y的值,即為此月份該零售點的估計值.
解答:解:(1:(1)根據(jù)所給的五組數(shù)據(jù),得到五個有序數(shù)對,在平面直角坐標系中畫出點,得到散點圖.
:(I)散點圖(3分)
精英家教網(wǎng)
(五個點中,有錯的,不能得(2分),有兩個或兩個以上對的,至少得1分)
兩個變量符合正相關(guān)   …(3分)
(2)設(shè)回歸直線的方程是:
?
y
=bx+a
.
y
=3.4,
.
x
=6
;…(4分)
b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
-3×(-1.4)+(-1)×(-0.4)+1×0.6+3×1.6
9+1+1+9
=
10
20
=
1
2
…(6分)
a=0.4
∴y對銷售額x的回歸直線方程為:y=0.5x+0.4…(7分)
(3)當銷售額為4(千萬元)時,利潤額為:
?
y
=0.5×4+0.4
=2.4(百萬元)                     …(8分)
點評:本題考查線性回歸方程,解題的關(guān)鍵是掌握住線性回歸方程中系數(shù)的求法公式及線性回歸方程的形式,按公式中的計算方法求得相關(guān)的系數(shù),得出線性回歸方程,本題考查了公式的應(yīng)用能力及計算能力,求線性回歸方程運算量較大,解題時要嚴謹,莫因為計算出錯導(dǎo)致解題失。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如表.
商店名稱 A B C D E
銷售額x (千萬元) 3 5 6 7 9
利潤額y (百萬元) 2 3 3 4 5
(1)畫出散點圖.觀察散點圖,說明兩個變量有怎樣的相關(guān)性;
(2)由最小二乘法計算得出,利潤額y對銷售額x的回歸直線方程為
y
=
1
2
x+
a
.問當銷售額為4(千萬元)時,估計利潤額的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如下表
商店名稱 A B C D E
銷售額x(千萬元) 3 5 6 7 9
利潤額y(百萬元) 2 3 3 4 5
(Ⅰ)用最小二乘法計算利潤額y對銷售額x的回歸直線方程.b=
   
n
i=1
x
i
y
i
-n
.
x
.
y
         
       
n
i=1
xi 2-n
.
x
2
      
,a=
.
y
-b
.
x

(Ⅱ)當銷售額為4(千萬元)時,估計利潤額的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如下表
商店名稱 A B C D E
銷售額(x)/千萬元 3 5 6 7 9
利潤額(y)/百萬元 2 3 3 4 5
(1)畫出銷售額和利潤額的散點圖.
(2)用最小二乘法計算利潤額y對銷售額x的回歸直線方程.
(3)對計算結(jié)果進行簡要的分析說明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如下表
商店名稱 A B C D
E
銷售額(x)/千萬元 3 5 6 7 9
利潤額(y)/百萬元 2 3 3 4 5
(1)畫出銷售額和利潤額的散點圖.
(2)若銷售額和利潤額具有相關(guān)關(guān)系,用最小二乘法計算利潤額y對銷售額x的回歸直線方程y=bx+a,其中b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,a=
.
y
-b
.
x

(3)若獲得利潤是4.5時估計銷售額是多少(百萬)?

查看答案和解析>>

同步練習(xí)冊答案