已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若向量
m
=(cosB,2cos2
C
2
-1)與向量
n
=(2a-b,c)共線(xiàn).
(1)求角C的大小;
(2)若c=2
3
,S△ABC=2
3
,求a,b的值.
考點(diǎn):正弦定理,平面向量數(shù)量積的運(yùn)算
專(zhuān)題:解三角形
分析:(1)根據(jù)向量共線(xiàn)建立條件關(guān)系,利用三角函數(shù)的關(guān)系式,即可求角C的大。
(2)根據(jù)三角形的面積公式,以及余弦定理建立方程組,即可得到結(jié)論.
解答: 解:(1)∵向量
m
=(cosB,2cos2
C
2
-1)與向量
n
=(2a-b,c)共線(xiàn),
∴ccosB=(2a-b)cosC,
根據(jù)正弦定理得sinCcosB=(2sinA-sinB)cosC,
∴sinCcosB+sinBcosC=2sinAcosC,
即sinA═2sinAcosC,
∴cosC=
1
2
,即C=
π
3

(2)∵c2=a2+b2-2abcosC,
∴a2+s2-ab=12,①
∵S△ABC=2
3
=
1
2
absinC
,
∴ab=8,②,
由①②得
a=2
b=4
a=4
b=2
點(diǎn)評(píng):本題主要考查正弦定理和余弦定理的應(yīng)用,要求熟練掌握相應(yīng)的定理和公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果一個(gè)空間幾何體的正視圖、側(cè)視圖、俯視圖都是直徑等于6的圓,那么這個(gè)空間幾何體的體積等于(  )
A、144πB、36π
C、24πD、18π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|0<x≤3},B={x|x<-1,或x>2},則A∩B=( 。
A、(2,3]
B、(-∞,-1)∪(0,+∞)
C、(-1,3]
D、(-∞,0)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

衡水市為“市中學(xué)生知識(shí)競(jìng)賽”進(jìn)行選拔性測(cè)試,且規(guī)定:成績(jī)大于或等于90分的有參賽資格,90分以下(不包括90分)的則被淘汰.若現(xiàn)有500人參加測(cè)試,學(xué)生成績(jī)的頻率分布直方圖如圖:
(Ⅰ)求獲得參賽資格的人數(shù);
(Ⅱ)根據(jù)頻率直方圖,估算這500名學(xué)生測(cè)試的平均成績(jī);
(Ⅲ)若知識(shí)競(jìng)賽分初賽和復(fù)賽,在初賽中每人最多有5次選題答題的機(jī)會(huì),累計(jì)答對(duì)3題或答錯(cuò)3題即終止,答對(duì)3題者方可參加復(fù)賽,已知參賽者甲答對(duì)每一個(gè)問(wèn)題的概率都相同,并且相互之間沒(méi)有影響,已知他連續(xù)兩次答錯(cuò)的概率為
1
9
,求甲在初賽中答題個(gè)數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某同學(xué)完成一項(xiàng)任務(wù)共用去9h,他記錄的完成工作量的百分?jǐn)?shù)如下表:
時(shí)間/h 1 2 3 4 5 6 7 8 9
完成的百分?jǐn)?shù)/% 15 30 45 60 60 70 80 90 100
(1)如果用T(x)表示x(h)后他完成工作量的百分?jǐn)?shù),那么T(5)是多少?求出T(x),并畫(huà)出其圖象;
(2)如果該同學(xué)在早晨8時(shí)開(kāi)始工作,什么時(shí)候他在休息?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinx+acosx的圖象經(jīng)過(guò)點(diǎn)(-
π
3
,0).
(1)求實(shí)數(shù)a的值;
(2)設(shè)g(x)=[f(x)]2-2,求函數(shù)g(x)的最小正周期與單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙、丙、丁、戊5名學(xué)生進(jìn)行勞動(dòng)技術(shù)比賽,決出第一名至第五名的名次.比賽之后甲乙兩位參賽者去詢(xún)問(wèn)成績(jī),回答者對(duì)甲說(shuō)“根遺憾,你和乙都投有得到冠軍”,對(duì)乙說(shuō)“你當(dāng)然不會(huì)是最差的”.
(Ⅰ)從上述回答分析,5人的名次排列可能有多少種不同的情況;
(Ⅱ)比賽組委會(huì)規(guī)定,第一名獲獎(jiǎng)金1000元,第二名獲獎(jiǎng)金800元,第三名獲獎(jiǎng)金600元,第四及第五名沒(méi)有獎(jiǎng)金,求丙獲獎(jiǎng)金數(shù)的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿(mǎn)足條件
x≥0
x-y+2≥0
2x+y-5≤0
,則z=x+3y+5的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿(mǎn)足約束條件
x+y-5≤0
x-2y+1≤0
x-1≥0
,則z=x+2y的最大值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案