(2006•重慶二模)某商店計(jì)劃投入資金20萬(wàn)元經(jīng)銷(xiāo)甲或乙兩種商品,已知經(jīng)銷(xiāo)甲商品與乙商品所獲得的總利潤(rùn)分別為P和Q(萬(wàn)元),且它們與投入資金x(萬(wàn)元)的關(guān)系是:P=
x
4
,Q=
a
2
x
(a>0);若不管資金如何投放,經(jīng)銷(xiāo)這兩種商品或其中之一種所獲得的利潤(rùn)總不小于5萬(wàn)元,則a的最小值應(yīng)為( 。
分析:設(shè)投資甲商品20-x萬(wàn)元,則投資乙商品x萬(wàn)元(0≤x≤20),由題意,可得P+Q≥5,0≤x≤20時(shí)恒成立,化簡(jiǎn)求最值,即可得到結(jié)論.
解答:解:設(shè)投資甲商品20-x萬(wàn)元,則投資乙商品x萬(wàn)元(0≤x≤20).
利潤(rùn)分別為P=
20-x
4
,Q=
a
2
x
(a>0)
∵P+Q≥5,0≤x≤20時(shí)恒成立
則化簡(jiǎn)得a
x
x
2
,0≤x≤20時(shí)恒成立
(1)x=0時(shí),a為一切實(shí)數(shù);
(2)0<x≤20時(shí),分離參數(shù)a≥
x
2
,0<x≤20時(shí)恒成立
∴a要比右側(cè)的最大值都要大于或等于 
∵右側(cè)的最大值為
5

∴a≥
5

綜上,a≥
5
點(diǎn)評(píng):本題考查函數(shù)最值的運(yùn)用,考查學(xué)生利用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•重慶二模)設(shè)復(fù)數(shù)z=
3
+i
2
,那么
1
z
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•重慶二模)在△ABC中,lgsinA,lgsinB,lgsinC成等差數(shù)列,是三邊a,b,c成等比數(shù)列的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•重慶二模)已知f(x)是定義在R的奇函數(shù),當(dāng)x<0時(shí),f(x)=(
1
2
x,那么f-1(0)+f-1(-8)的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•重慶二模)若拋物線的頂點(diǎn)坐標(biāo)是M(1,0),準(zhǔn)線l的方程是x-2y-2=0,則拋物線的焦點(diǎn)坐標(biāo)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案