定義在R上的函數(shù)f(x),滿足對任意x1,x2∈R,有f(x1+x2)=f(x1)+f(x2).
(1)判斷函數(shù)f(x)的奇偶性;
(2)如果f(3)=1,f(x-1)<2,且f(x)在[0,+∞)上是增函數(shù),試求實數(shù)x的取值范圍.
解:(1)令x1=x2=0,得f(0)=0;
令x1=x,x2=-x,得f(0)=f(x)+f(-x),
即f(-x)=-f(x),
∴f(x)為奇函數(shù).
(2)∵f(3)=1,
∴f(6)=f(3)+f(3)=2,
∴原不等式化為f(x-1)<f(6).
又f(x)在[0,+∞)上是增函數(shù),
f(0)=0且f(x)是奇函數(shù),
∴f(x)在(-∞,+∞)上是增函數(shù).
因此x-1<6,
∴x<7.
所以實數(shù)x的取值范圍是(-∞,7).
分析:(1)由函數(shù)f(x)滿足對任意x1,x2∈R,有f(x1+x2)=f(x1)+f(x2).令x1=x2=0,可得f(0)=0,令x1=x,x2=-x,結合函數(shù)奇偶性的定義,可得f(x)為奇函數(shù).
(2)若f(x)在[0,+∞)上是增函數(shù),根據(jù)奇函數(shù)在對稱區(qū)間上單調性相同,可得f(x)在R上為增函數(shù),結合f(3)=1,可將不等式f(x-1)<2轉化為一個關于x的整式不等式,解不等式可得實數(shù)x的取值范圍
點評:本題考查的知識點是函數(shù)奇偶性的證明與判斷,函數(shù)單調性的證明與判斷,抽象函數(shù),是函數(shù)圖象和性質的綜合應用,難度中檔.