分析 由A的度數(shù)求值sinA的值,再由a、c的值,利用正弦定理求出sinC的值,再利用特殊角的三角函數(shù)值求出C的度數(shù),進而求出B的度數(shù),確定出sinB的值,由a,c及sinB的值,利用三角形的面積公式即可求出三角形ABC的面積.
解答 解:∵a=2,c=2$\sqrt{3}$,A=30°,
∴由正弦定理$\frac{a}{sinA}=\frac{c}{sinC}$,
得:sinC=$\frac{c•sinA}{a}$=$\frac{\sqrt{3}}{2}$,
∴C=60°或120°,
∴B=90°或30°,
則S△ABC=$\frac{1}{2}$acsinB=2$\sqrt{3}$或$\sqrt{3}$.
故答案為:2$\sqrt{3}$或$\sqrt{3}$.
點評 此題考查了正弦定理,三角形的面積公式,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\sqrt{7}$ | C. | 3 | D. | $\sqrt{13}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -7 | B. | 2 | C. | -1 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com