【題目】某種商品計劃提價,現(xiàn)有四種方案,方案(Ⅰ)先提價m%,再提價n%;方案(Ⅱ)先提價n%,再提價m%;方案(Ⅲ)分兩次提價,每次提價( )%;方案(Ⅳ)一次性提價(m+n)%,已知m>n>0,那么四種提價方案中,提價最多的是( )
A.Ⅰ
B.Ⅱ
C.Ⅲ
D.Ⅳ
【答案】C
【解析】解:依題意得:設單價為1,那么方案(Ⅰ)售價為:1×(1+m%)(1+n%)=(1+m%)(1+n%); 方案(Ⅱ)提價后的價格是:(1+n%)(1+m%));
(1+m%)(1+n%)=1+m%+n%+m%n%=1+(m+n)%+m%n%;
(Ⅲ)提價后的價格是(1+ %)2=1+(m+n)%+( %)2;
方案(Ⅳ)提價后的價格是1+(m+n)%
所以只要比較m%n%與( %)2的大小即可
∵( %)2﹣m%n%=( %)2≥0
∴( %)2≥m%n%
即(1+ %)2>(1+m%) (1+n%)
因此,方案(Ⅲ)提價最多.
故選C.
【考點精析】認真審題,首先需要了解等差數(shù)列的性質(在等差數(shù)列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數(shù)列是等差數(shù)列),還要掌握等比數(shù)列的基本性質({an}為等比數(shù)列,則下標成等差數(shù)列的對應項成等比數(shù)列;{an}既是等差數(shù)列又是等比數(shù)列== {an}是各項不為零的常數(shù)列)的相關知識才是答題的關鍵.
科目:高中數(shù)學 來源: 題型:
【題目】非零向量 , 的夾角為 ,且滿足| |=λ| |(λ>0),向量組 , , 由一個 和兩個 排列而成,向量組 , , 由兩個 和一個 排列而成,若 + + 所有可能值中的最小值為4 2 , 則λ= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的焦距為4,其短軸的兩個端點與長軸的一個端點構成正三角形.
(Ⅰ)求橢圓C的標準方程和長軸長;
(Ⅱ)設F為橢圓C的左焦點,P為直線x=﹣3上任意一點,過點F作直線PF的垂線交橢圓C于M,N,記d1 , d2分別為點M和N到直線OP的距離,證明:d1=d2 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線x2=2py(p>0),F(xiàn)為其焦點,過點F的直線l交拋物線于A、B兩點,過點B作x軸的垂線,交直線OA于點C,如圖所示.
(Ⅰ)求點C的軌跡M的方程;
(Ⅱ)直線m是拋物線的不與x軸重合的切線,切點為P,M與直線m交于點Q,求證:以線段PQ為直徑的圓過點F.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四菱錐P﹣ABCD中,PA⊥AD,PA=1,PC=PD,底面ABCD是梯形,AB∥CD,AB⊥BC,AB=BC=1,CD=2.
(I)求證:PA⊥AB;
(II)求直線AD與平面PCD所成角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設各項均為正數(shù)的數(shù)列{an}和{bn}滿足:對任意n∈N* , an , bn , an+1成等差數(shù)列,bn , an+1 , bn+1成等比數(shù)列,且a1=1,b1=2,a2=3.
(Ⅰ)證明數(shù)列{ }是等差數(shù)列;
(Ⅱ)求數(shù)列{ }前n項的和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)圖象如圖,f'(x)是f(x)的導函數(shù),則下列數(shù)值排序正確的是( )
A.0<f'(2)<f'(3)<f(3)﹣f(2)
B.0<f'(3)<f'(2)<f(3)﹣f(2)
C.0<f'(3)<f(3)﹣f(2)<f'(2)
D.0<f(3)﹣f(2)<f'(2)<f'(3)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設等差數(shù)列{an}的前n項和為Sn , 若Sm﹣1=﹣2,Sm=0,Sm+1=3,其中m≥2,則nSn的最小值為( )
A.﹣3
B.﹣5
C.﹣6
D.﹣9
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解本市居民的生活成本,甲、乙、內三名同學利用假期分別對三個社區(qū)進行了“家庭每月日常消費額”的調查.他們將調查所得到的數(shù)據(jù)分別繪制成頻率分布直方圖(如圖所示),甲、乙、丙所調查數(shù)據(jù)的標準差分別為x1 , x2 , x3 , 則它們的大小關系為( )
A.s1>s2>s3
B.s1>s3>s2
C.s3>s2>s1
D.s3>s1>s2
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com