設(shè)數(shù)列{an}的前n項和為Sn﹣2Sn﹣anSn+1=0,n=1,2,3…

(1)求a1,a2

(2)求Sn與Sn﹣1(n≥2)的關(guān)系式,并證明數(shù)列{}是等差數(shù)列.

(3)求S1•S2•S3…S2010•S2011的值.

考點:

等差關(guān)系的確定;數(shù)列的求和;數(shù)列遞推式.

專題:

計算題;等差數(shù)列與等比數(shù)列.

分析:

(1)對已知等式分別取n=1、n=2,解關(guān)于a1、a2的方程,即可得到a1,a2的值.

(2)將an=Sn﹣Sn﹣1代入已知等式,化簡整理得到Sn=,代入并整理得到=﹣1+,由此即可得到數(shù)列{}是以﹣2為首項,公差等于﹣1的等差數(shù)列.

(3)由(2)結(jié)合等差數(shù)列的通項公式,可得Sn=,再分別取n=1、2、3、…、2011代入題中的式子,化簡即可得到S1•S2•S3•…•S2010•S2011的值

解答:

解:(1)∵Sn2﹣2Sn﹣anSn+1=0,

∴取n=1,得S12﹣2S1﹣a1S1+1=0,即a12﹣2a1﹣a12+1=0,解之得a1=,

取n=2,得S22﹣2S2﹣a2S2+1=0,即(+a22﹣2(+a2)﹣a2+a2)+1=0,解之得a2=

(2)由題設(shè)Sn2﹣2Sn﹣anSn+1=0,

當(dāng)n≥2時,an=Sn﹣Sn﹣1,代入上式,化簡得SnSn﹣1﹣2Sn+1=0

∴Sn=,可得Sn﹣1﹣1=﹣1=

==﹣1+

∴數(shù)列{}是以=﹣2為首項,公差d=﹣1的等差數(shù)列.

(3)由(2)得=﹣2+(n﹣1)×(﹣1)=﹣n﹣1,

可得Sn=1﹣=

∴S1•S2•S3•…•S2010•S2011=×××…××=

即S1•S2•S3•…•S2010•S2011的值為

點評:

本題給出數(shù)列{an}的前n項和Sn與an的關(guān)系式,求通項公式并證明新的等差數(shù)列,著重考查了等差數(shù)列的通項公式、數(shù)列前n項和Sn與an的關(guān)系等知識,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=an(2n-1),求數(shù)列{bn}的前n項的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列an的前n項的和為Sna1=
3
2
,Sn=2an+1-3

(1)求a2,a3;
(2)求數(shù)列an的通項公式;
(3)設(shè)bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關(guān)系式;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域為Dn,若Dn內(nèi)的整點(整點即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點)個數(shù)為an(n∈N*
(1)寫出an+1與an的關(guān)系(只需給出結(jié)果,不需要過程),
(2)求數(shù)列{an}的通項公式;
(3)設(shè)數(shù)列an的前n項和為SnTn=
Sn
5•2n
,若對一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州一模)設(shè)數(shù)列{an}的前n項和Sn=2n-1,則
S4
a3
的值為(  )

查看答案和解析>>

同步練習(xí)冊答案