已知橢圓的兩個焦點,,過且與坐標軸不平行的直線與橢圓交于兩點,如果的周長等于8。

(1)求橢圓的方程;

(2)若過點的直線與橢圓交于不同兩點,試問在軸上是否存在定點,使恒為定值?若存在,求出點的坐標及定值;若不存在,說明理由。

 

【答案】

(1) ;(2)   定值

【解析】

試題分析:(I)由題意知c=,4a=8,∴a=2,b=1

∴橢圓的方程為。

(II)當直線l的斜率存在時,設(shè)其斜率為k,則l的方程為y=k(x-1)

消去y得(4k2+1)x2-8k2x+4k2-4=0

設(shè)P(x1,y1),Q(x2,y2

則由韋達定理得x1+x2=,x1x2=

=(m-x1,-y1),=(m-x2,-y2)

·=(m-x1)(m-x2)+y1y2=m2-m(x1+x2)+x1x2+y1y2

=m2-m(x1+x2)+x1x2+k2(x1-1)(x2-1)

==

要使上式為定值須=4,解得m=,∴為定值

當直線l的斜率不存在時P(1,),Q(1,-)由E(,0)可得

=(,-),

=(,)∴=

綜上所述當時,為定值

考點:本題主要考查橢圓的標準方程,直線與橢圓的位置關(guān)系,平面向量的坐標運算。

點評:難題,求橢圓的標準方程,主要運用了橢圓的幾何性質(zhì),注意明確焦點軸和a,b,c的關(guān)系。曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達定理。本題(2)推理直線斜率的兩種情況,易于出現(xiàn)遺漏現(xiàn)象。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的兩個焦點分別是F1(0,-2
2
),F2(0,2
2
)
,離心率e=
2
2
3

(1)求橢圓的方程;
(2)一條不與坐標軸平行的直線l與橢圓交于不同的兩點M,N,且線段MN中點的橫坐標為-
1
2
,求直線l的傾斜角的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的兩個焦點F1(-
3
,0),F2 (
3
,0)
,且橢圓短軸的兩個端點與F2構(gòu)成正三角形.
(I)求橢圓的方程;
(Ⅱ)過點(1,0)且與坐標軸不平行的直線l與橢圓交于不同兩點P、Q,若在x軸上存在定點E(m,0),使
PE
QE
恒為定值,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的兩個焦點為F1(-
5
,0)
,F2(
5
,0)
,M是橢圓上一點,若
MF1
MF2
=0
,|
MF1
|•|
MF2
|=8
,則該橢圓的方程是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的兩個焦點是(-3,0),(3,0),且點(0,2)在橢圓上,則橢圓的標準方程是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的兩個焦點將長軸三等分,焦點到相應準線的距離為8,則此橢圓的長軸長為
6
6

查看答案和解析>>

同步練習冊答案