已知直線(xiàn)y=-2上有一個(gè)動(dòng)點(diǎn)Q,過(guò)點(diǎn)Q作直線(xiàn)l1垂直于x軸,動(dòng)點(diǎn)P在l1上,且滿(mǎn)足OP⊥OQ(O為坐標(biāo)原點(diǎn)),記點(diǎn)P的軌跡為C.
(1)求曲線(xiàn)C的方程.
(2)若直線(xiàn)l2是曲線(xiàn)C的一條切線(xiàn),當(dāng)點(diǎn)(0,2)到直線(xiàn)l2的距離最短時(shí),求直線(xiàn)l2的方程.

(1) x2=2y(x≠0)   (2) x-y-1=0或x+y+1=

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線(xiàn)C1:x2+by=b2經(jīng)過(guò)橢圓C2:+=1(a>b>0)的兩個(gè)焦點(diǎn).

(1)求橢圓C2的離心率;
(2)設(shè)點(diǎn)Q(3,b),又M,N為C1與C2不在y軸上的兩個(gè)交點(diǎn),若△QMN的重心在拋物線(xiàn)C1上,求C1和C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,橢圓過(guò)點(diǎn)P(1, ),其左、右焦點(diǎn)分別為F1,F2,離心率e=,M,N是直線(xiàn)x=4上的兩個(gè)動(dòng)點(diǎn),且·=0.

(1)求橢圓的方程;
(2)求|MN|的最小值;
(3)以MN為直徑的圓C是否過(guò)定點(diǎn)?請(qǐng)證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)動(dòng)點(diǎn)P(x,y)(x≥0)到定點(diǎn)F的距離比到y(tǒng)軸的距離大.記點(diǎn)P的軌跡為曲線(xiàn)C.
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)圓M過(guò)A(1,0),且圓心M在P的軌跡上,BD是圓M在y軸上截得的弦,當(dāng)M運(yùn)動(dòng)時(shí)弦長(zhǎng)BD是否為定值?說(shuō)明理由;
(3)過(guò)F作互相垂直的兩直線(xiàn)交曲線(xiàn)C于G、H、R、S,求四邊形GRHS面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

橢圓C=1(ab>0)的左、右焦點(diǎn)分別是F1F2,離心率為,過(guò)F1且垂直于x軸的直線(xiàn)被橢圓C截得的線(xiàn)段長(zhǎng)為1.
(1)求橢圓C的方程;
(2)點(diǎn)P是橢圓C上除長(zhǎng)軸端點(diǎn)外的任一點(diǎn),過(guò)點(diǎn)P作斜率為k的直線(xiàn)l,使得l與橢圓C有且只有一個(gè)公共點(diǎn).設(shè)直線(xiàn)PF1,PF2的斜率分別為k1k2.若k≠0,試證明為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知線(xiàn)段AB的兩個(gè)端點(diǎn)A,B分別在x軸、y軸上滑動(dòng),|AB|=3,點(diǎn)M滿(mǎn)足2=.
(1)求動(dòng)點(diǎn)M的軌跡E的方程.
(2)若曲線(xiàn)E的所有弦都不能被直線(xiàn)l:y=k(x-1)垂直平分,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓:的離心率,原點(diǎn)到過(guò)點(diǎn),的直線(xiàn)的距離是.
(1)求橢圓的方程;
(2)若橢圓上一動(dòng)點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)為,求 的取值范圍;
(3)如果直線(xiàn)交橢圓于不同的兩點(diǎn),,且,都在以為圓心的圓上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓過(guò)點(diǎn),且離心率.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線(xiàn)與橢圓相交于,兩點(diǎn)(不是左右頂點(diǎn)),橢圓的右頂點(diǎn)為,且滿(mǎn)足,試判斷直線(xiàn)是否過(guò)定點(diǎn),若過(guò)定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知命題:方程表示焦點(diǎn)在y軸上的橢圓;
命題:雙曲線(xiàn)的離心率,若為真命題,為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案