15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(5-a)x-3a}&{x<1}\\{lo{g}_{a}x}&{x≥1}\end{array}\right.$在(-∞,+∞)上是增函數(shù),則實數(shù)a的取值范圍是( 。
A.[$\frac{5}{4}$,5)B.($\frac{5}{4}$,5]C.(1,5)D.(5,+∞)

分析 根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系,結(jié)合對數(shù)函數(shù)和一次函數(shù)的單調(diào)性建立不等式關(guān)系即可.

解答 解:∵f(x)=$\left\{\begin{array}{l}{(5-a)x-3a}&{x<1}\\{lo{g}_{a}x}&{x≥1}\end{array}\right.$在(-∞,+∞)上是增函數(shù),
∴$\left\{\begin{array}{l}{a>1}\\{5-a>0}\\{5-a-3a≤lo{g}_{a}1=0}\end{array}\right.$,
即$\left\{\begin{array}{l}{a>1}\\{a<5}\\{a≥\frac{5}{4}}\end{array}\right.$,即$\frac{5}{4}$≤a<5,
故選:A

點評 本題主要考查復(fù)合函數(shù)單調(diào)性的應(yīng)用,結(jié)合對數(shù)函數(shù)和一次函數(shù)的單調(diào)性是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=x3-2x2+2,則下列區(qū)間必存在零點的是(  )
A.($-2,-\frac{3}{2}$)B.($-\frac{3}{2},-1)$C.($-1,-\frac{1}{2}$)D.($-\frac{1}{2},0$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.定義在R上的函數(shù)f(x)滿足f(-x)=f(x),對于任意x1,x2∈[0,+∞),$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0(x2≠x1),則(  )
A.f(-1)<f(-2)<f(3)B.f(3)<f(-1)<f(-2)C.f(-2)<f(-1)<f(3)D.f(3)<f(-2)<f(-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若圓x2+y2-4mx+(2m-3)y+4=0被直線2x-2y-3=0所截得的弦最長,則實數(shù)m的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)g(x)=1-x,f[g(x)]=$\frac{4+x}{2-{x}^{2}}$,則f(2)=( 。
A.5B.-5C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在如圖所示的韋恩圖中,A,B是非空集合,定義A*B表示陰影部分集合,若集合A={x|y=$\sqrt{3x-{x}^{2}}$,x,y∈R},B={y|y=4x,x>0},則A*B=[0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知a1,a2,a3,a4成等比數(shù)列,其公比為2,則$\frac{{a}_{3}+2{a}_{4}}{{a}_{1}+2{a}_{2}}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,(a+b+c)(a-b+c)=ac,則B=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知a+a-1=5,求a2+a-2和a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$的值.

查看答案和解析>>

同步練習(xí)冊答案