【題目】下列說(shuō)法正確的是(

A.若兩條直線與同一條直線所成的角相等,則這兩條直線平行

B.若一個(gè)平面內(nèi)有三個(gè)點(diǎn)到另一個(gè)平面的距離相等,則這兩個(gè)平面平行

C.若一條直線分別平行于兩個(gè)相交平面,則一定平行它們的交線

D.若兩個(gè)平面都平行于同一條直線,則這兩個(gè)平面平行

【答案】C

【解析】

利用逐一驗(yàn)證法,結(jié)合面面平行的判定以及線線平行的特點(diǎn),可得結(jié)果.

A錯(cuò),由兩條直線與同一條直線所成的角相等,

可知兩條直線可能平行,可能相交,也可能異面;

B錯(cuò),

若一個(gè)平面內(nèi)有三個(gè)點(diǎn)到另一個(gè)平面的距離相等,

則這兩個(gè)平面可能平行或相交;

C正確,設(shè)////,

利用線面平行的性質(zhì)定理,在平面中存在直線//,

在平面中存在直線//,所以可知//,

根據(jù)線面平行的判定定理,可得//,

然后根據(jù)線面平行的性質(zhì)定理可知//,所以//;

D錯(cuò),兩個(gè)平面可能平行,也可能相交.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別是、,并且經(jīng)過(guò)點(diǎn).

(1)求橢圓的方程;

(2)若直線與圓相切,并與橢圓交于不同的兩點(diǎn).當(dāng),且滿足時(shí),求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C過(guò)點(diǎn)M0-2)、N(3,1),且圓心C在直線x+2y+1=0上.

(1)求圓C的方程;

(2)設(shè)直線ax-y+1=0與圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)a,使得過(guò)點(diǎn)P(2,0)的直線l垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】歐拉公式為虛數(shù)單位,為自然底數(shù))是由瑞士著名數(shù)學(xué)家歐拉發(fā)明的,它將指數(shù)函數(shù)的定義域擴(kuò)大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,它在復(fù)變函數(shù)論里占有非重要的地位,被譽(yù)為“數(shù)學(xué)中的天橋”,根據(jù)歐拉公式可知,表示的復(fù)數(shù)在復(fù)平面中位于( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究某種微生物的生長(zhǎng)規(guī)律,研究小組在實(shí)驗(yàn)室對(duì)該種微生物進(jìn)行培育實(shí)驗(yàn).前三天觀測(cè)的該微生物的群落單位數(shù)量分別為12,16,24.根據(jù)實(shí)驗(yàn)數(shù)據(jù),用y表示第天的群落單位數(shù)量,某研究員提出了兩種函數(shù)模型;;,其中abc,p,qr都是常數(shù).

1)根據(jù)實(shí)驗(yàn)數(shù)據(jù),分別求出這兩種函數(shù)模型的解析式;

2)若第4天和第5天觀測(cè)的群落單位數(shù)量分別為4072,請(qǐng)從這兩個(gè)函數(shù)模型中選出更合適的一個(gè),并計(jì)算從第幾天開始該微生物群落的單位數(shù)量超過(guò)1000

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知ABCD為梯形,AB∥CD,CD=2AB,M為線段PC上一點(diǎn).

(1)設(shè)平面PAB∩平面PDC=l,證明:AB∥l

(2)在棱PC上是否存在點(diǎn)M,使得PA∥平面MBD,若存在請(qǐng)確定點(diǎn)M的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)若關(guān)于的方程有唯一解,,,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門科學(xué).在人類歷史發(fā)展和社會(huì)生活中,數(shù)學(xué)發(fā)揮著不可替代的作用,也是學(xué)習(xí)和研究現(xiàn)代科學(xué)技術(shù)必不可少的基本工具.

1)為調(diào)查大學(xué)生喜歡數(shù)學(xué)命題是否與性別有關(guān),隨機(jī)選取名大學(xué)生進(jìn)行問(wèn)卷調(diào)查,當(dāng)被調(diào)查者問(wèn)卷評(píng)分不低于分則認(rèn)為其喜歡數(shù)學(xué)命題,當(dāng)評(píng)分低于分則認(rèn)為其不喜歡數(shù)學(xué)命題,問(wèn)卷評(píng)分的莖葉圖如下:

依據(jù)上述數(shù)據(jù)制成如下列聯(lián)表:

請(qǐng)問(wèn)是否有的把握認(rèn)為大學(xué)生是否喜歡數(shù)學(xué)命題與性別有關(guān)?

參考公式及數(shù)據(jù):.

2)在某次命題大賽中,同學(xué)要進(jìn)行輪命題,其在每輪命題成功的概率均為,各輪命題相互獨(dú)立,若該同學(xué)在輪命題中恰有次成功的概率為,記該同學(xué)在輪命題中的成功次數(shù)為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn),點(diǎn),、分別為線段、上的動(dòng)點(diǎn),且滿足.

1)若,求點(diǎn)的坐標(biāo);

2)設(shè)點(diǎn)的坐標(biāo)為,求的外接圓的一般方程,并求的外接圓所過(guò)定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案