如圖,在△ABC中,AB=AC,以AC為直徑作圓,⊙O交BC于D,作DE⊥AB于E.

求證:DE是⊙O的切線.

答案:
解析:

  證明:連結(jié)AD、OD.

  因?yàn)锳B=AC,

  所以∠B=∠C.AC為直徑,

  所以∠ADC=90°,AD⊥BC,DE⊥AB,∠DEB=90°.

  所以Rt△ABD∽Rt△DEB,∠BAD=∠EDB.

  又∠CAD=∠ODA=∠EDB,∠ADE+∠EDB=90°,

  所以∠ODA+∠ADE=90°,DE是切線.

  分析:欲證DE為⊙O的切線,因?yàn)镈點(diǎn)在圓上,只需證明DE⊥OD即可.可利用相似三角形的知識證明.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,已知∠ABC=90°,AB上一點(diǎn)E,以BE為直徑的⊙O恰與AC相切于點(diǎn)D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直徑BE的長;
(2)計(jì)算:△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,D是邊AC上的點(diǎn),且AB=AD,2AB=
3
BD,BC=2BD,則sinC的值為( 。
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,設(shè)
AB
=a
,
AC
=b
,AP的中點(diǎn)為Q,BQ的中點(diǎn)為R,CR的中點(diǎn)恰為P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC為鄰邊,AP為對角線,作平行四邊形ANPM,求平行四邊形ANPM和三角形ABC的面積之比
S平行四邊形ANPM
S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠B=45°,D是BC邊上的一點(diǎn),AD=5,AC=7,DC=3.
(1)求∠ADC的大小;
(2)求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,已知
BD
=2
DC
,則
AD
=(  )

查看答案和解析>>

同步練習(xí)冊答案