已知橢圓,通徑長為1,且焦點與短軸兩端點構成等邊三角形.

   (1)求橢圓的方程;

   (2)過點Q(-1,0)的直線l交橢圓于A,B兩點,交直線x=-4于點E,點Q分 所成比為λ,點E分所成比為μ,求證λ+μ為定值,并計算出該定值.

解:(1)由條件得,所以方程

   (2)易知直線l斜率存在,令

由(1)

代入有

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•濰坊二模)如圖,已知F(2,0)為橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點,AB為橢圓的通徑(過焦點且垂直于長軸的弦),線段OF的垂直平分線與橢圓相交于兩點C、D,且∠CAD=90°.
(I)求橢圓的方程;
(II)設過點F斜率為k(k≠0)的直線l與橢圓相交于兩點P、Q.若存在一定點E(m,0),使得x軸上的任意一點(異于點E、F)到直線EP、EQ的距離相等,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓,通徑長為1,且焦點與短軸兩端點構成等邊三角形,(1)求橢圓的方程;(2)過點Q(-1,0)的直線l交橢圓于A,B兩點,交直線x=-4于點E,點Q分 所成比為λ,點E分所成比為μ,求證λ+μ為定值,并計算出該定值.

查看答案和解析>>

同步練習冊答案