【題目】銷售某種活海鮮,根據(jù)以往的銷售情況,按日需量(公斤)屬于[0,100),[100,200),[200,300),[300,400),[400,500]進(jìn)行分組,得到如圖所示的頻率分布直方圖.這種海鮮經(jīng)銷商進(jìn)價(jià)成本為每公斤20元,當(dāng)天進(jìn)貨當(dāng)天以每公斤30元進(jìn)行銷售,當(dāng)天未售出的須全部以每公斤10元賣給冷凍庫(kù).某海鮮產(chǎn)品經(jīng)銷商某天購(gòu)進(jìn)了300公斤這種海鮮,設(shè)當(dāng)天利潤(rùn)為元.

(I)求關(guān)于的函數(shù)關(guān)系式;

(II)結(jié)合直方圖估計(jì)利潤(rùn)不小于800元的概率.

【答案】(I);(II)0.072.

【解析】

(I)利潤(rùn)=(售價(jià)-成本)數(shù)量,分段表示即可.

(II)由(I)知時(shí),的范圍,之后結(jié)合直方圖可求概率.

(Ⅰ)當(dāng)日需求量不低于公斤時(shí),利潤(rùn)元;

當(dāng)日需求量不足公斤時(shí),利潤(rùn)(元);

(Ⅱ)由得,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,已知圓圓心為,過(guò)點(diǎn)且斜率為的直線與圓相交于不同的兩點(diǎn)

)求的取值范圍;

)是否存在常數(shù),使得向量共線?如果存在,求值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】考察下列無(wú)窮數(shù)列,判斷是否有極限,若有,求出極限;若沒(méi)有,請(qǐng)說(shuō)明理由.

1

2

3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在等比數(shù)列{an}中,=2,,=128,數(shù)列{bn}滿足b1=1,b2=2,且{}為等差數(shù)列.

(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;

(2)求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為,且直線l經(jīng)過(guò)曲線C的左焦點(diǎn)F.

(1)求直線l的普通方程;

(2)設(shè)曲線C的內(nèi)接矩形的周長(zhǎng)為L(zhǎng),求L的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐P-ABCD中,ABCD為梯形,AB//CD,BC⊥AB,AB=2,BC=,CD=PC=。

(I)點(diǎn)E在線段PB上,滿足CE//平面PAD,求的值。

(II)已知AC與BD的交點(diǎn)為M,若PM=1,且平面PAC⊥平面ABCD,求二面角P-BC-M平面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)不同的單位向量之間滿足關(guān)系:,其中

1)若,求的解析式;

2能否和垂直?能否和平行?若不能,則說(shuō)明理由;若能,則求出對(duì)應(yīng)的k值;

3)求夾角的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在斜三棱柱中,AB=1,AC=2,ABAC,底面ABC.

1)求直線與平面所成角的正弦值;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上是增函數(shù),求實(shí)數(shù)的取值范圍;

(2)若函數(shù)上的最小值為3,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案