隨機變量X的分布列如下:
X
-1
0
1
P
a
b
c
其中a,b,c成等差數(shù)列,若E(X)=,則方差V(X)的值是________.
a、b、c成等差數(shù)列,有2b=a+c,又a+b+c=1,E(X)=-1×a+1×c=c-a=.
得a=,b=,c=,∴V(X)=2×2×2×.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(2012•廣東)某班50位學生期中考試數(shù)學成績的頻率直方分布圖如圖所示,其中成績分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中x的值;
(2)從成績不低于80分的學生中隨機選取2人,該2人中成績在90分以上(含90分)的人數(shù)記為ξ,求ξ的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

袋中共有10個大小相同的編號為1、2、3的球,其中1號球有1個,2號球有3個,3號球有6個.
(1)從袋中任意摸出2個球,求恰好是一個2號球和一個3號球的概率;
(2)從袋中任意摸出2個球,記得到小球的編號數(shù)之和為,求隨機變量的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

一中食堂有一個面食窗口,假設學生買飯所需的時間互相獨立,且都是整數(shù)分鐘,對以往學生買飯所需的時間統(tǒng)計結(jié)果如下:
買飯時間(分)
1
2
3
4
5
頻率
0.1
0.4
0.3
0.1
0.1
從第一個學生開始買飯時計時.
(Ⅰ)估計第三個學生恰好等待4分鐘開始買飯的概率;
(Ⅱ)表示至第2分鐘末已買完飯的人數(shù),求的分布列及數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙兩人同時參加奧運志愿者選拔賽的考試,已知在備選的10道題中,甲能答對其中的6道題,乙能答對其中的8道題.規(guī)定每次考試都從備選題中隨機抽出3道題進行測試,至少答對2道題才能入選.
(I)求甲答對試題數(shù)ξ的分布列及數(shù)學期望;
(II)求甲、乙兩人至少有一人入選的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

將一枚硬幣拋擲6次,求正面次數(shù)與反面次數(shù)之差ξ的概率分布列,并求出ξ的期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某電器商經(jīng)過多年的經(jīng)驗發(fā)現(xiàn)本店每個月售出的電冰箱的臺數(shù)ξ是一個隨機變量,它的分布列為P(ξ=i)=(i=1,2,…,12);設每售出一臺電冰箱,電器商獲利300元.如銷售不出,則每臺每月需花保管費100元.問電器商每月初購進多少臺電冰箱才能使月平均收益最大?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

A高校自主招生設置了先后三道程序:部分高校聯(lián)合考試、本校專業(yè)考試、本校面試.在每道程序中,設置三個成績等級:優(yōu)、良、中.若考生在某道程序中獲得“中”,則該考生在本道程序中不通過,且不能進入下面的程序.考生只有全部通過三道程序,自主招生考試才算通過.某中學學生甲參加A高校自主招生考試,已知該生在每道程序中通過的概率均為,每道程序中得優(yōu)、良、中的概率分別為p1、p2.
(1)求學生甲不能通過A高校自主招生考試的概率;
(2)設X為學生甲在三道程序中獲優(yōu)的次數(shù),求X的概率分布及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

袋中有大小相同的三個球,編號分別為1,2,2,從袋中每次取出一個球,若取到球的編號為奇數(shù),則取球停止,用X表示所有被取到的球的編號之和,則X的方差為________.

查看答案和解析>>

同步練習冊答案