【題目】橢圓的一條弦被點(diǎn)平分,則此弦所在的直線方程是( )
A. B. C. D.
【答案】D
【解析】
設(shè)過A點(diǎn)的直線與橢圓兩交點(diǎn)的坐標(biāo),分別代入橢圓方程,得到兩個(gè)關(guān)系式,分別記作①和②,①﹣②后化簡得到一個(gè)關(guān)系式,然后根據(jù)A為弦EF的中點(diǎn),由A的坐標(biāo)求出E和F兩點(diǎn)的橫縱坐標(biāo)之和,表示出直線EF方程的斜率,把化簡得到的關(guān)系式變形,將E和F兩點(diǎn)的橫縱坐標(biāo)之和代入即可求出斜率的值,然后由點(diǎn)A的坐標(biāo)和求出的斜率寫出直線EF的方程即可.
設(shè)過點(diǎn)A的直線與橢圓相交于兩點(diǎn),E(x1,y1),F(xiàn)(x2,y2),
則有①,②,
①﹣②式可得:
又點(diǎn)A為弦EF的中點(diǎn),且A(4,2),∴x1+x2=8,y1+y2=4,
∴(x1﹣x2)﹣(y1﹣y2)=0
即得kEF=
∴過點(diǎn)A且被該點(diǎn)平分的弦所在直線的方程是y﹣2=﹣(x﹣4),即x+2y﹣8=0.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}中,a1=1,an﹣an+1=anan+1 , n∈N* .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)Sn為{an}的前n項(xiàng)和,bn=S2n﹣Sn , 求bn的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),,直線與直線相交于點(diǎn),直線與直線的斜率分別記為與,且.
(1)求點(diǎn)的軌跡的方程;
(2)過定點(diǎn)作直線與曲線交于兩點(diǎn), 的面積是否存在最大值?若存在,求出面積的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求C;
(2)若c= ,△ABC的面積為 ,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,,是的動(dòng)點(diǎn),過點(diǎn)作的垂線,線段的中垂線交于點(diǎn),的軌跡為.
(1)求軌跡的方程;
(2)過且與坐標(biāo)軸不垂直的直線交曲線于兩點(diǎn),若以線段為直徑的圓與直線相切,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè):實(shí)數(shù)滿足,其中;:實(shí)數(shù)滿足.
(1)若,且為真,為假,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m, n是兩條不同的直線,是三個(gè)不同的平面, 給出下列四個(gè)命題:
①若m⊥α,n∥α,則m⊥n;; ②若α∥β, β∥r, m⊥α,則m⊥r;
③若m∥α,n∥α,則m∥n;; ④若α⊥r, β⊥r,則α∥β.
其中正確命題的序號(hào)是 ( )
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是雙曲線 的兩個(gè)焦點(diǎn),P是C上一點(diǎn),若,且的最小內(nèi)角為,則C的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)到準(zhǔn)線的距離為,直線與拋物線交于兩點(diǎn),過這兩點(diǎn)分別作拋物線的切線,且這兩條切線相交于點(diǎn).
(1)若的坐標(biāo)為,求的值;
(2)設(shè)線段的中點(diǎn)為,點(diǎn)的坐標(biāo)為,過的直線與線段為直徑的圓相切,切點(diǎn)為,且直線與拋物線交于兩點(diǎn),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com