【題目】若函數(shù)的定義域為,滿足對任意,,有,則稱為型函數(shù);若函數(shù)的定義域為,滿足對任意,恒成立,且對任意,,有,則稱為對數(shù)型函數(shù).
(1)當函數(shù)時,判斷是否為型函數(shù),并說明理由.
(2)當函數(shù)時,證明:是對數(shù)型函數(shù).
(3)若函數(shù)是型函數(shù),且滿足對任意,有,問是否為對數(shù)型函數(shù)?若是,加以證明;若不是,請說明理由.
【答案】(1)不是型函數(shù),詳見解析(2)證明見解析(3)是對數(shù)型函數(shù),證明見解析
【解析】
(1)由,作差化簡,得到當,同號時,此時,即可得到結(jié)論;
(2)因為恒成立,可利用分析法和函數(shù)的新定義,作出判定和證明.
(3)由的新定義和,得到,進而得到,再根據(jù)對數(shù)的運算性質(zhì),即可求解.
(1)由題,函數(shù),
則
當,同號時,此時,
此時不滿足,所以不是型函數(shù).
(2)因為恒成立,
要證對任意,,,
即證對任意,,,
即證對任意,,.
因為,
所以是對數(shù)型函數(shù)
(3)函數(shù)是對數(shù)型函數(shù).證明如下:
因為是型函數(shù),所以對任意,,有,
又由對任意,有,所以,
所以,所以,
所以,
所以是對數(shù)型函數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】已知過定點,且與直線:相切的動圓圓心為.
(Ⅰ)求圓心的軌跡方程;
(Ⅱ)過點作直線與軌跡交于、兩點,交直線于點,中點記為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的的參數(shù)方程為(其中為參數(shù)),以坐標原點為極點,軸的正半軸為極軸的極坐標系中,點的極坐標為,直線經(jīng)過點.曲線的極坐標方程為.
(1)求直線的普通方程與曲線的直角坐標方程;
(2)過點作直線的垂線交曲線于兩點(在軸上方),求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某品種一批樹苗生長情況,在該批樹苗中隨機抽取了容量為120的樣本,測量樹苗高度(單位:cm),經(jīng)統(tǒng)計,其高度均在區(qū)間[19,31]內(nèi),將其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6組,制成如圖所示的頻率分布直方圖.其中高度為27 cm及以上的樹苗為優(yōu)質(zhì)樹苗.
(1)求圖中a的值;
(2)已知所抽取的這120棵樹苗來自于A,B兩個試驗區(qū),部分數(shù)據(jù)如下列聯(lián)表:
A試驗區(qū) | B試驗區(qū) | 合計 | |
優(yōu)質(zhì)樹苗 | 20 | ||
非優(yōu)質(zhì)樹苗 | 60 | ||
合計 |
將列聯(lián)表補充完整,并判斷是否有99.9%的把握認為優(yōu)質(zhì)樹苗與A,B兩個試驗區(qū)有關(guān)系,并說明理由;
(3)用樣本估計總體,若從這批樹苗中隨機抽取4棵,其中優(yōu)質(zhì)樹苗的棵數(shù)為X,求X的分布列和數(shù)學期望EX.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中.)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是一個“蝴蝶形圖案(陰影區(qū)域)”,其中是過拋物線的兩條互相垂直的弦(點在第二象限),且交于點,點為軸上一點,,其中為銳角
(1)設(shè)線段的長為,將表示為關(guān)于的函數(shù)
(2)求“蝴蝶形圖案”面積的最小值,并指出取最小值時的大小
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某地一天從時的溫度變化曲線近似滿足函數(shù).
(1)求該地區(qū)這一段時間內(nèi)溫度的最大溫差.
(2)若有一種細菌在到之間可以生存,則在這段時間內(nèi),該細菌最多能存活多長時間?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】山東新舊動能轉(zhuǎn)換綜合試驗區(qū)是黨的十九大后獲批的首個區(qū)域性國家發(fā)展戰(zhàn)略,也是中國第一個以新舊動能轉(zhuǎn)換為主題的區(qū)域發(fā)展戰(zhàn)略.泰安某高新技術(shù)企業(yè)決定抓住發(fā)展機遇,加快企業(yè)發(fā)展.已知該企業(yè)的年固定成本為500萬元,每生產(chǎn)設(shè)備臺,需另投入成本萬元.若年產(chǎn)量不足80臺,則;若年產(chǎn)量不小于80臺,則.每臺設(shè)備售價為100萬元,通過市場分析,該企業(yè)生產(chǎn)的設(shè)備能全部售完.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(臺)的關(guān)系式;
(2)年產(chǎn)量為多少臺時,該企業(yè)所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種商品價格與該商品日需求量之間的幾組對照數(shù)據(jù)如下表,經(jīng)過進一步統(tǒng)計分析,發(fā)現(xiàn)y與x具有線性相關(guān)關(guān)系.
價格x(元/kg) | 10 | 15 | 20 | 25 | 30 |
日需求量y(kg) | 11 | 10 | 8 | 6 | 5 |
(1)根據(jù)上表給出的數(shù)據(jù),求出y與x的線性回歸方程;
(2)利用(1)中的回歸方程,當價格元/kg時,日需求量y的預(yù)測值為多少?
(參考公式:線性回歸方程,其中,.)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學有初中學生1800人,高中學生1200人.為了解全校學生本學期開學以來的課外閱讀時間,學校采用分層抽樣方法,從中抽取了100名學生進行問卷調(diào)查.將樣本中的“初中學生”和“高中學生”,按學生的課外閱讀時間(單位:小時)各分為5組:,,,,,得其頻率分布直方圖如圖所示.
(1)估計全校學生中課外閱讀時間在小時內(nèi)的總?cè)藬?shù)約是多少;
(2)從全校課外閱讀時間不足10個小時的樣本學生中隨機抽取3人,求至少有2個初中生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com