16.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^x}({x≤0})\\{x^2}({x>0})\end{array}\right.$若函數(shù)g(x)=f(x)-k(x-1)有且只有一個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是k<-1或k=4.

    分析 若函數(shù)g(x)=f(x)-k(x-1)有且只有一個(gè)零點(diǎn),則函數(shù)y=f(x)與函數(shù)y=k(x-1)的圖象有且只有一個(gè)交點(diǎn),畫(huà)出函數(shù)y=f(x)與函數(shù)y=k(x-1)的圖象,數(shù)形結(jié)合,可得答案.

    解答 解:若函數(shù)g(x)=f(x)-k(x-1)有且只有一個(gè)零點(diǎn),
    則函數(shù)y=f(x)與函數(shù)y=k(x-1)的圖象有且只有一個(gè)交點(diǎn),
    函數(shù)y=f(x)與函數(shù)y=k(x-1)的圖象如下圖所示:

    函數(shù)y=k(x-1)的圖象恒過(guò)(1,0)點(diǎn),
    當(dāng)直線經(jīng)過(guò)(0,1)點(diǎn)時(shí),k=-1,
    當(dāng)直線與y=x2,的圖象相切時(shí),
    k(x-1)=x2的△=k2-4k=0,
    解得:k=4,或k=0(舍去),
    由圖可得:k<-1或k=4.
    故答案為:k<-1或k=4

    點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是根的存在性及根的個(gè)數(shù)判斷,數(shù)形結(jié)合思想,函數(shù)的圖象,難度中檔.

    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

    6.設(shè)函數(shù)$f(x)={x^2}+\frac{1}{x+1},x∈[0,1]$.
    (1)證明:$f(x)≥{x^2}-\frac{4}{9}x+\frac{8}{9}$;
    (2)證明:$\frac{68}{81}<f(x)≤\frac{3}{2}$.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

    7.已知函數(shù)f(x)=x+a,g(x)=x+$\frac{4}{x}$,若?x1∈[1,3],?x2∈[1,4],使得f(x1)≥g(x2),則實(shí)數(shù)a的取值范圍為(  )
    A.a≥1B.a≥2C.a≥3D.a≥4

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

    4.已知數(shù)列{an}的前n項(xiàng)和Sn=n2-n(n∈N*).正項(xiàng)等比數(shù)列{bn}的首項(xiàng)b1=1,且3a2是b2,b3的等差中項(xiàng).
    (I)求數(shù)列{an},{bn}的通項(xiàng)公式;
    (II)若cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

    11.設(shè)集合Sn={1,2,3,…2n-1},若X是Sn的子集,把X的所有元素的乘積叫做X的容量(規(guī)定空集的容量為0),若X的容量為奇(偶)數(shù),則稱X為Sn的奇(偶)子集.其中Sn的奇子集的個(gè)數(shù)為( 。
    A.$\frac{{{n^2}+n}}{2}$B.2n-1C.2nD.22n-1-2n+1

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

    1.“數(shù)列{an}為等比數(shù)列”是“${a_{n+1}}^2={a_n}•{a_{n+2}}$”的(  )
    A.充分不必要條件B.必要不充分條件
    C.充要條件D.既不充分也不必要條件

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

    8.已知函數(shù)f(x)=x3-3x2,g(x)=ax2-4.
    (Ⅰ)求函數(shù)f(x)的極值;
    (Ⅱ)若對(duì)任意的x∈[0,+∞),都有f(x)≥g(x),求實(shí)數(shù)a的取值范圍;
    (Ⅲ)函數(shù)f(x)的圖象是否為中心對(duì)稱圖形,如果是,請(qǐng)寫(xiě)出對(duì)稱中心;如果不是,請(qǐng)說(shuō)明理由.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

    5.已知四棱錐P-ABCD中,平面PAD⊥平面ABCD,其中四邊形ABCD為正方形,△PAD為等邊三角形,AB=2,則四棱錐P-ABCD外接球的體積為$\frac{{28\sqrt{21}}}{27}π$.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

    16.在正三棱柱ABC-A1B1C1中,若AB=$\sqrt{2}$BB1,則AB1與BC1所成角的大小為( 。
    A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{12}$D.$\frac{π}{2}$

    查看答案和解析>>

    同步練習(xí)冊(cè)答案