【題目】某市電視臺(tái)為了提高收視率而舉辦有獎(jiǎng)問答活動(dòng),隨機(jī)對(duì)該市15~65歲的人群抽樣了 人,回答問題統(tǒng)計(jì)結(jié)果及頻率分布直方圖如圖表所示.

(1)分別求出 的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(3)在(2)的前提下,電視臺(tái)決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.

【答案】
(1)解:由頻率表中第一組數(shù)據(jù)可知,第一組總?cè)藬?shù)為 ,
再結(jié)合頻率分布直方圖可知 ,

,
x=
y=
a=18;b=9;x=0.9;y=0.2
(2)解:第二,三,四組中回答正確的共有 人,所以利用分層抽樣在 人中抽取 人,每組分別抽取的人數(shù)為:
第二組: 人,
第三組: 人,
第四組:
第2,3,4組每組應(yīng)各抽取2,3,1人.
(3)解:設(shè)第二組的 人為 ,第三組的 人為 ,第四組的 人為 ,則從 人中抽 人所有可能的結(jié)果有:
個(gè)基本
事件,其中第二組至少有一人被抽中的有
個(gè)基本事件.所以第二組至少有一人獲得幸運(yùn)獎(jiǎng)的概率為 .
【解析】(1)結(jié)合頻率分布表和直方圖的性質(zhì)求a,b,x,y的值;
(2)利用分層抽樣的特點(diǎn)求各級(jí)組應(yīng)抽取的人數(shù);
(3)古典概型,先列出所有基本事件,找出合符條件的基本事件的總數(shù),進(jìn)而求概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題:(1)已知向量 是空間的一組基底,則向量 也是空間的一組基底;(2) 在正方體 中,若點(diǎn) 內(nèi),且 ,則 的值為1;(3) 圓 上到直線 的距離等于1的點(diǎn)有2個(gè);(4)方程 表示的曲線是一條直線.其中正確命題的序號(hào)是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某保險(xiǎn)公司有一款保險(xiǎn)產(chǎn)品的歷史收益率(收益率=利潤(rùn)÷保費(fèi)收入)的頻率分布直方圖如圖所示:

(Ⅰ)試估計(jì)平均收益率;

(Ⅱ)根據(jù)經(jīng)驗(yàn),若每份保單的保費(fèi)在20元的基礎(chǔ)上每增加元,對(duì)應(yīng)的銷量(萬(wàn)份)與(元)有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下5組的對(duì)應(yīng)數(shù)據(jù):

據(jù)此計(jì)算出的回歸方程為.

(i)求參數(shù)的估計(jì)值;

(ii)若把回歸方程當(dāng)作的線性關(guān)系,用(Ⅰ)中求出的平均收益率估計(jì)此產(chǎn)品的收益率,每份保單的保費(fèi)定為多少元時(shí)此產(chǎn)品可獲得最大收益,并求出該最大收益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】潮州統(tǒng)計(jì)局就某地居民的月收入調(diào)查了人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分

布直方圖(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在)。

(1)求居民月收入在的頻率;

(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);

(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再?gòu)倪@人中分層抽樣方法抽出人作進(jìn)一步分析,則月收入在的這段應(yīng)抽多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)從高三男生中隨機(jī)抽取100名學(xué)生,將他們的身高數(shù)據(jù)進(jìn)行整理,得到下側(cè)的頻率分布表.

組號(hào)

分組

頻率

1

[160,165)

0.05

2

0.35

3

0.3

4

0.2

5

0.1

合計(jì)

1.00

Ⅰ)為了能對(duì)學(xué)生的體能做進(jìn)一步了解,該校決定在第3,4,5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)行體能測(cè)試,問第3,4,5組每組各應(yīng)抽取多少名學(xué)生進(jìn)行測(cè)試;

Ⅱ)在(Ⅰ)的前提下,學(xué)校決定在6名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行引體向上測(cè)試,求第3組中至少有一名學(xué)生被抽中的概率;

試估計(jì)該中學(xué)高三年級(jí)男生身高的中位數(shù)位于第幾組中,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )
A. ,y R,若x+y 0,則x 且y
B.a R,“ ”是“a>1”的必要不充分條件
C.命題“ x R,使得 ”的否定是“ R,都有
D.“若 ,則a<b”的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,且 .
(1)求角B的大小;
(2)若b= ,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知A為鈍角,且2a ,若 ,則△ABC的面積的最大值為 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,點(diǎn)B是橢圓C的上頂點(diǎn),點(diǎn)Q在橢圓C上(異于B點(diǎn)).
(Ⅰ)若橢圓V過(guò)點(diǎn)(﹣ , ),求橢圓C的方程;
(Ⅱ)若直線l:y=kx+b與橢圓C交于B、P兩點(diǎn),若以PQ為直徑的圓過(guò)點(diǎn)B,證明:存在k∈R, =

查看答案和解析>>

同步練習(xí)冊(cè)答案