【題目】設(shè)函數(shù)f(x)= ﹣ax,e為自然對(duì)數(shù)的底數(shù) (Ⅰ)若函數(shù)f(x)的圖象在點(diǎn)(e2 , f(e2))處的切線方程為 3x+4y﹣e2=0,求實(shí)數(shù)a,b的值;
(Ⅱ)當(dāng)b=1時(shí),若存在 x1 , x2∈[e,e2],使 f(x1)≤f′(x2)+a成立,求實(shí)數(shù)a的最小值.

【答案】解:(I) ﹣a(x>0,且x≠1), ∵函數(shù)f(x)的圖象在點(diǎn)(e2 , f(e2))處的切線方程為 3x+4y﹣e2=0,
∴f′(e2)= ﹣a= ,f(e2)= =﹣ ,
聯(lián)立解得a=b=1.
(II)當(dāng)b=1時(shí),f(x)= ,f′(x)= ,
∵x∈[e,e2],∴l(xiāng)nx∈[1,2],
∴f′(x)+a= =﹣ + ,
∴[f′(x)+a]max= ,x∈[e,e2].
存在 x1 , x2∈[e,e2],使 f(x1)≤f′(x2)+a成立x∈[e,e2],f(x)min≤f(x)max+a= ,
①當(dāng)a 時(shí),f′(x)≤0,f(x)在x∈[e,e2]上為減函數(shù),則f(x)min= ,解得a≥
②當(dāng)a 時(shí),由f′(x)= ﹣a在[e,e2]上的值域?yàn)?
(i)當(dāng)﹣a≥0即a≤0時(shí),f′(x)≥0在x∈[e,e2]上恒成立,因此f(x)在x∈[e,e2]上為增函數(shù),
∴f(x)min=f(e)= ,不合題意,舍去.
(ii)當(dāng)﹣a<0時(shí),即 時(shí),由f′(x)的單調(diào)性和值域可知:存在唯一x0∈(e,e2),使得f′(x0)=0,
且滿足當(dāng)x∈[e,x0),f′(x)<0,f(x)為減函數(shù);當(dāng)x∈ 時(shí),f′(x)>0,f(x)為增函數(shù).
∴f(x)min=f(x0)= ﹣ax0 ,x0∈(e,e2).
∴a≥ ,與 矛盾.
(或構(gòu)造函數(shù) 即可).
綜上可得:a的最小值為
【解析】(I) ﹣a(x>0,且x≠1),由題意可得f′(e2)= ﹣a= ,f(e2)= =﹣ ,聯(lián)立解得即可.(II)當(dāng)b=1時(shí),f(x)= ,f′(x)= ,由x∈[e,e2],可得 .由f′(x)+a= =﹣ + ,可得[f′(x)+a]max= ,x∈[e,e2].存在 x1 , x2∈[e,e2],使 f(x1)≤f′(x2)+a成立x∈[e,e2],f(x)min≤f(x)max+a= ,對(duì)a分類討論解出即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O為△ABC內(nèi)一點(diǎn),且 , ,若B,O,D三點(diǎn)共線,則t的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間上單調(diào)遞減的是

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),令h(x)=f(x)g(x),且對(duì)任意x1 , x2∈(0,+∞),都有 <0,g(1)=0,則不等式xh(x)<0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的普通方程為,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的極坐標(biāo)方程;

(2)求曲線焦點(diǎn)的極坐標(biāo),其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且曲線處的切線與平行.

(1)求的值;

(2)當(dāng)時(shí),試探究函數(shù)的零點(diǎn)個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 (a>0,b>0)的中心為O,左焦點(diǎn)為F,P是雙曲線上的一點(diǎn) =0且4 =3 ,則該雙曲線的離心率是( )
A.
B.
C.
+
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面內(nèi), ,| |=| |=2, = + ,若| |<1,則| |的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)在其定義域內(nèi)是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;

(2)若,令為自然對(duì)數(shù)的底數(shù)),求證:存在,使

請(qǐng)考生在第22、23兩題中任選一題作答.注意:只能做所選定的題目.如果多做,則按所做的第一個(gè)題目計(jì)分.

查看答案和解析>>

同步練習(xí)冊(cè)答案