1.已知橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1及直線l:y=$\frac{3}{2}$x+m,
(1)當(dāng)直線l與該橢圓有公共點(diǎn)時(shí),求實(shí)數(shù)m的取值范圍;
(2)求直線l被此橢圓截得的弦長(zhǎng)的最大值.

分析 (1)將直線方程代入橢圓方程,求得9x2+6mx+2m2-8=0,由△≥0,即可求得實(shí)數(shù)m的取值范圍;
(2)由(1)可知,由韋達(dá)定理及弦長(zhǎng)公式可知丨AB丨=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{\sqrt{13}}{3}$•$\sqrt{-{m}^{2}+8}$,當(dāng)m=0時(shí),直線l被橢圓截得的弦長(zhǎng)的最大值為$\frac{2\sqrt{26}}{3}$.

解答 解:(1)將直線方程代入橢圓方程:$\left\{\begin{array}{l}{y=\frac{3}{2}x+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{9}=1}\end{array}\right.$,消去y,整理得:9x2+6mx+2m2-8=0,
由△=36m2-36(2m2-8)=-36(m2-8),
∵直線l與橢圓有公共點(diǎn),
∴△≥0,即-36(m2-8)≥0
解得:-2$\sqrt{2}$≤m≤2$\sqrt{2}$,
故所求實(shí)數(shù)m的取值范圍為[-2$\sqrt{2}$,2$\sqrt{2}$];
(2)設(shè)直線l與橢圓的交點(diǎn)為A(x1,y1),B(x2,y2),
由(1)可知:利用韋達(dá)定理可知:x1+x2=-$\frac{6m}{9}$,x1x2=$\frac{2{m}^{2}-8}{9}$,
故丨AB丨=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+(\frac{3}{2})^{2}}$•$\sqrt{(-\frac{6m}{9})^{2}-4×\frac{2{m}^{2}-8}{9}}$=$\frac{\sqrt{13}}{3}$•$\sqrt{-{m}^{2}+8}$,
當(dāng)m=0時(shí),直線l被橢圓截得的弦長(zhǎng)的最大值為$\frac{2\sqrt{26}}{3}$.

點(diǎn)評(píng) 本題考查直線與橢圓的位置關(guān)系,考查韋達(dá)定理及弦長(zhǎng)公式的應(yīng)用,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=x2+ax+b(a,b∈R),如果?x0,使f(x0)=0.且?x∈R,都有f(x)≥f(x0)成立.又若關(guān)于x的不等式f(x)<c的解集為(m,m+8),則實(shí)數(shù)c的值為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC=2,點(diǎn)E是PC的中點(diǎn),F(xiàn)在直線PA上.
(1)若EF⊥PA,求$\frac{PF}{PA}$的值;
(2)求二面角P-BD-E的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)任意的x∈R,都有f(x+1)=f(x-1),當(dāng)0≤x≤1時(shí),f(x)=x2,若函數(shù)y=f(x)-x-a在[0,2]內(nèi)有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍為$-\frac{1}{4}<a<0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.求證函數(shù)y=ln$\frac{1}{1+x}$滿足關(guān)系式x$\frac{dy}{dx}$+1=ey

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.?dāng)?shù)列{an}的前n項(xiàng)和為Sn=10n-n2,求數(shù)列{|an|}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)f(x)=xa-ax(0<a<1),則f(x)在[0,+∞)內(nèi)的極大值點(diǎn)x0等于( 。
A.0B.aC.1D.1-a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,點(diǎn)P為棱DD1上一點(diǎn).
(1)求證:平面PAC⊥平面BDD1B1;
(2)若P是棱DD1的中點(diǎn),求CP與平面BDD1B1所成的角大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若函數(shù)f(x)=kx-lnx在區(qū)間(1,+∞)單調(diào)遞增,則k的取值范圍是[1,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案