已知y=f(x)是定義在(-∞,+∞)上的奇函數(shù),且在[0,+∞)上為增函數(shù).

(1)求證:y=f(x)在(-∞,0]上是增函數(shù);

(2)如果f()=1,解不等式-1<f(2x+1)≤0.

(1)證明:略.

(2)解析:∵f(x)是定義在(-∞,+∞)上的奇函數(shù),∴f(0)=0.

    ∵f()=1,

    ∴f(-)=-1,

    ∴-1<f(2x+1)≤0f(-)<f(2x+1)≤f(0).

    ∵f(x)在[0,+∞)上為增函數(shù),

    ∴f(x)在(-∞,0]上也為增函數(shù),

    ∴

解得  -<x≤-.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a•2x
2x+
2
的圖象過點(0,
2
-1)

(1)求f(x)的解析式;
(2)設(shè)P1(x1,y1),P2(x2,y2)為y=f(x)的圖象上兩個不同點,又點P(xP,yP)滿足:
OP
=
1
2
(
OP1
+
OP2
)
,其中O為坐標(biāo)原點.試問:當(dāng)xP=
1
2
時,yP是否為定值?若是,求出yP的值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個相鄰函數(shù)的交點為A,B,若m變化時,AB的長度是一個定值,則AB的值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:教材完全解讀 高中數(shù)學(xué) 必修5(人教B版課標(biāo)版) 人教B版課標(biāo)版 題型:044

如圖,已知函數(shù)f(x)=x+的定義域為(0,+∞),且f(2)=2+.設(shè)點P是函數(shù)圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.

(1)求a的值;

(2)問:|PM|·|PN|是否為定值?若是,則求出該定值,若不是,則說明理由;

(3)設(shè)O為坐標(biāo)原點,求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:甘肅省廣河二中2010-2011學(xué)年高二上學(xué)期期中考試數(shù)學(xué)試題 題型:044

已知函數(shù)f(x)=x+的定義域為(0,+∞),且f(2)=2+,設(shè)點P是函數(shù)圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M,N.

(1)求a的值;

(2)判斷|PM|·|PN|是否為定值?若是求出該定值,若不是,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
a•2x
2x+
2
的圖象過點(0,
2
-1)

(1)求f(x)的解析式;
(2)設(shè)P1(x1,y1),P2(x2,y2)為y=f(x)的圖象上兩個不同點,又點P(xP,yP)滿足:
OP
=
1
2
(
OP1
+
OP2
)
,其中O為坐標(biāo)原點.試問:當(dāng)xP=
1
2
時,yP是否為定值?若是,求出yP的值,若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案