函數(shù)f(x)=2-x|log0.5x|-1的零點個數(shù)為


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
A
分析:通過去掉絕對值符號,將方程的解轉(zhuǎn)化為函數(shù)圖象的交點問題,從而判斷函數(shù)的零點個數(shù).
解答:解:函數(shù)f(x)=2-x|log0.5x|-1
當0<x<1時,函數(shù)化為f(x)=2-xlog2x-1
令2-xlog2x-1=0可得:2-x=,方程有一個解,
當x>1時,函數(shù)化為f(x)=2-xlog0.5x-1
令2-xlog0.5x-1=0可得:2x=log2x,方程沒有解,
所以函數(shù)f(x)=2-x|log0.5x|-1的零點個數(shù)有1個.
故選A.
點評:本題考查函數(shù)的零點,函數(shù)的圖象的作法,考查數(shù)形結(jié)合與轉(zhuǎn)化思想.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

8、已知函數(shù)f(x)是定義在R上的偶函數(shù),且滿足f(x+1)+f(x)=3,當x∈[0,1]時,f(x)=2-x,則f(-2 009.9)=
1.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面對命題“函數(shù)f(x)=x+
1
x
是奇函數(shù)”的證明不是綜合法的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)為定義在R上的偶函數(shù),且滿足f(x+1)+f(x)=1,當x∈[1,2]時,f(x)=2-x,則f(-2013)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案