【題目】已知橢圓C)的離心率為,且過點(diǎn).

1)求橢圓C的方程;

2)過坐標(biāo)原點(diǎn)的直線與橢圓交于M,N兩點(diǎn),過點(diǎn)M作圓的一條切線,交橢圓于另一點(diǎn)P,連接,證明:.

【答案】12)見解析

【解析】

1)根據(jù)橢圓的離心率為,且過點(diǎn),由,結(jié)合求解.

2)當(dāng)直線的斜率不存在時(shí),可得直線的方程為,驗(yàn)證即可. 當(dāng)直線斜率存在時(shí),設(shè)直線的方程為,根據(jù)直線與圓相切,得到,設(shè),則,聯(lián)立,由弦長(zhǎng)公式求得 ,然后由兩點(diǎn)間的距離公式,將韋達(dá)定理代入求得即可.

1)設(shè)橢圓的半焦距為c,因?yàn)闄E圓的離心率為,且過點(diǎn).

所以,又,

解得,,

所以橢圓C的方程為:.

2)①當(dāng)直線的斜率不存在時(shí),依題意,可得直線的方程為.

若直線,直線,可得,,,

,,所以;

其他情況,由對(duì)稱性,同理可得.

②當(dāng)直線斜率存在時(shí),設(shè)直線的方程為

∵直線與圓相切,

∴圓心O到直線的距離為,即,

設(shè),則,

聯(lián)立,消元y,整理得,

,.

,

,

,

.

,

.

綜上可知成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,AC的上頂點(diǎn),過A的直線lC交于另一點(diǎn)B,與x軸交于點(diǎn)D,O點(diǎn)為坐標(biāo)原點(diǎn).

1)若,求l的方程;

2)已知PAB的中點(diǎn),y軸上是否存在定點(diǎn)Q,使得?若存在,求Q的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù)為.

1)當(dāng)時(shí),證明:函數(shù)上單調(diào)遞增;

2)若,討論函數(shù)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠質(zhì)檢部門要對(duì)該廠流水線生產(chǎn)出的一批產(chǎn)品進(jìn)行檢驗(yàn),如果檢查到第件仍未發(fā)現(xiàn)不合格品,則此次檢查通過且認(rèn)為這批產(chǎn)品合格,如果在尚未抽到第件時(shí)已檢查到不合格品則拒絕通過且認(rèn)為這批產(chǎn)品不合格.設(shè)這批產(chǎn)品的數(shù)量足夠大,可以認(rèn)為每次檢查查到不合格品的概率都為,即每次抽查的產(chǎn)品是相互獨(dú)立的.

1)若,求這批產(chǎn)品能夠通過檢查的概率;

2)已知每件產(chǎn)品質(zhì)檢費(fèi)用為50元,若,設(shè)對(duì)這批產(chǎn)品的質(zhì)檢個(gè)數(shù)記作,求的分布列;

3)在(2)的條件下,已知1000批此類產(chǎn)品,若,則總平均檢查費(fèi)用至少需要多少元?(總平均檢查費(fèi)用每批次平均檢查費(fèi)用批數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系內(nèi),點(diǎn) 在曲線,(為參數(shù),)上運(yùn)動(dòng),以為極軸建立極坐標(biāo)系.直線的極坐標(biāo)方程為.

()寫出曲線的標(biāo)準(zhǔn)方程和直線的直角坐標(biāo)方程;

()若直線與曲線相交于兩點(diǎn),點(diǎn)在曲線上移動(dòng),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某十字路口的花圃中央有一個(gè)底面半徑為的圓柱形花柱,四周斑馬線的內(nèi)側(cè)連線構(gòu)成邊長(zhǎng)為的正方形.因工程需要,測(cè)量員將使用儀器沿斑馬線的內(nèi)側(cè)進(jìn)行測(cè)量,其中儀器的移動(dòng)速度為,儀器的移動(dòng)速度為.若儀器與儀器的對(duì)視光線被花柱阻擋,則稱儀器在儀器的“盲區(qū)”中.

1)如圖,斑馬線的內(nèi)側(cè)連線構(gòu)成正方形,儀器在點(diǎn)處,儀器上距離點(diǎn)處,試判斷儀器是否在儀器的“盲區(qū)”中,并說明理由;

2)如圖,斑馬線的內(nèi)側(cè)連線構(gòu)成正方形,儀器從點(diǎn)出發(fā)向點(diǎn)移動(dòng),同時(shí)儀器從點(diǎn)出發(fā)向點(diǎn)移動(dòng),在這個(gè)移動(dòng)過程中,儀器在儀器的“盲區(qū)”中的時(shí)長(zhǎng)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為2的正方形,,中點(diǎn),點(diǎn)上且平面,延長(zhǎng)線上,,交,且

(1)證明:平面;

(2)設(shè)點(diǎn)在線段上,若二面角,求的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,直線l的參數(shù)方程為:t為參數(shù)),直線l與曲線C分別交于M,N兩點(diǎn).

1)寫出曲線C和直線l的普通方程;

2)若點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(Ⅰ)若曲線在點(diǎn)處的切線與直線垂直,求的值與曲線在點(diǎn)處的切線方程;

(Ⅱ)若,且當(dāng)時(shí), 恒成立,求的最大值.(

查看答案和解析>>

同步練習(xí)冊(cè)答案