已知函數(shù)f(x)=
x+
1
x
,
x∈[-2,-1]
-2,x∈[-1,
1
2
)
x-
1
x
,
x∈[
1
2
,2]
,函數(shù)g(x)=ax-2,x∈[-2,2],對任意x1∈[-2,2],總存在x∈[-2,2],使得g(x)=f(x)成立,求a的取值范圍.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

定義區(qū)間[x1,x2]的長度為x2-x1.若函數(shù)y=|log2x|的定義域為[a,b],值域為[0,2],則區(qū)間[a,b]的長度的最大值為( 。
A、
15
2
B、
15
4
C、3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x,x≥4
f(x+2),x<4
,則f(1+log23)的值為( 。
A、6B、12C、24D、36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x         (x≤0)
log2x   (x>0)
,若函數(shù)y=f(x)-a有一個零點,則實數(shù)a的取值范圍時
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1+lg(x-1),x>1
g(x),x<1
的圖象關于點P對稱,且函數(shù)y=f(x+1)-1為奇函數(shù),則下列結(jié)論:
①點P的坐標為(1,1);
②當x∈(-∞,0)時,g(x)>0恒成立;
③關于x的方程f(x)=a,a∈R有且只有兩個實根.
其中正確結(jié)論的題號為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一家公司生產(chǎn)某種品牌服裝的年固定成本為10萬元,每生產(chǎn)1千件需另投入2.7萬元.設該公司一年內(nèi)生產(chǎn)該品牌服裝x千件并全部銷售完,每千件的銷售收入為R(x)萬元,且R(x)=
10.8-
1
30
x2,0<x≤10
108
x
-
1000
3x2
,x>10

(Ⅰ)求年利潤W(萬元)關于年產(chǎn)量x(千件)的函數(shù)解析式;
(Ⅱ)當年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲得的年利潤最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若一個圓柱的正視圖與其側(cè)面展開圖相似,則這個圓柱的側(cè)面積與全面積之比為( 。
A、
π
π
+1
B、
2
π
2
π
+1
C、
2
2
π
+1
D、
1
π
+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,AB是⊙O的直徑,VA垂直⊙O所在的平面,點C是圓周上不同于A,B的任意一點,M,N分別為VA,VC的中點,則下列結(jié)論正確的是( 。
A、MN∥ABB、MN與BC所成的角為45°C、OC⊥平面VACD、平面VAC⊥平面VBC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

閱讀程序框圖,若輸入m=5,n=3,則輸出a,i分別是( 。
A、a=15,i=3B、a=15,i=5C、a=10,i=3D、a=8,i=4

查看答案和解析>>

同步練習冊答案