設(shè)集合M={x|0<x≤3},集合N={x|0<x≤2},那么“a∈M”是“a∈N”的
必要不充分
必要不充分
條件.(用“充分不必要條件,必要不充分條件,充要條件”填空).
分析:通過舉反例可得充分性不成立,根據(jù)N⊆M可得必要性成立,從而得出結(jié)論.
解答:解:由x∈M不能推出x∈N,如x=3時,故充分性不成立.根據(jù)N⊆M可得,由x∈N成立,一定能推出x∈M,故必要性成立.
故“a∈M”是“a∈N”的必要不充分條件,
故答案為 必要不充分.
點評:本題主要考查充分條件、必要條件、充要條件的定義,通過給變量取特殊值,舉反例來說明某個命題不正確,是一種簡單有效的方法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

7、設(shè)集合M={x|0≤x≤1},N={y|0≤y≤1}.如圖四個圖象中,表示從M到N的映射的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={x|0<x≤3},N={x|-1<x≤2},那么“a∈M”是“a∈N”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={x|0≤x≤1},函數(shù)f(x)=
1
1-x
的定義域為N,則M∩N=
[0,1)
[0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題:
①設(shè)集合M={x|0<x≤3},N={x|0<x≤2},則“a∈M”是“a∈N”的充分而不必要條件;
②“|
a
+
b
|<1
”是“|
a
|+|
b
|<1
”的必要不充分條件;
③“a=1”是“直線x-ay=0與直線x+ay=0互相垂直”的充要條件;
④命題P:“?x0∈R,x02-x0-1>0”的否定?P:“?x∈R,x2-x-1≤0”.
則上述命題中為真命題的是( 。

查看答案和解析>>

同步練習(xí)冊答案