精英家教網 > 高中數學 > 題目詳情

【題目】已知數列的前項的和為,記

1)若是首項為,公差為的等差數列,其中,均為正數.

①當,成等差數列時,求的值;

②求證:存在唯一的正整數,使得

2)設數列是公比為的等比數列,若存在,,)使得,求的值.

【答案】1)①②見解析(2

【解析】

先寫出的表達式.

寫出,列出等式求解.

等價于是一個固定的數,當時,區(qū)間互不相交,且并集為,所以n存在且唯一.

先將等式化成基本量表示的形式,有,設出函數,當時,,又,從而找出r,t的值,再解出q

1)①因為,,成等差數列,

所以,即

解得,

②由,得,

整理得,解得,

由于

因此存在唯一的正整數,使得

2)因為,所以

,

,

因為,,所以,

所以,即,即單調遞增.

所以當時,,

,即,這與互相矛盾.

所以,即

,則,

,與相矛盾.

于是,所以,即

,所以

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面多邊形中,四邊形是邊長為2的正方形,四邊形為等腰梯形,的中點, ,現將梯形沿折疊,使平面平面.

1)求證:

2)求與平面成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)若曲線處的切線的斜率為2,求函數的單調區(qū)間;

2)若函數在區(qū)間上有零點,求實數的取值范圍.是自然對數的底數,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的定義域為,若上為增函數,則稱一階比增函數;若上為增函數,則稱二階比增函數”.我們把所有一階比增函數組成的集合記為,所有二階比增函數組成的集合記為.

(Ⅰ)已知函數,若,求實數的取值范圍;

(Ⅱ)已知的部分函數值由下表給出,











求證:;

(Ⅲ)定義集合

請問:是否存在常數,使得,,有成立?若存在,求出的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數方程為 t為參數),若以O為極點,x軸的正半軸為極軸且取相同的單位長度建立極坐標系,曲線C的極坐標方程為.

1)求曲線C的直角坐標方程及直線l的普通方程;

2)將所得曲線C向右平移1個單位長度,再將曲線C上的所有點的橫坐標變?yōu)樵瓉淼?/span>2倍,得到曲線,求曲線上的點到直線l的距離的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中

)求的單調區(qū)間;

)若在上存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】樹立和踐行綠水青山就是金山銀山,堅持人與自然和諧共生的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環(huán).據此,某網站推出了關于生態(tài)文明建設進展情況的調查,大量的統(tǒng)計數據表明,參與調查者中關注此問題的約占80%.現從參與調查的人群中隨機選出人,并將這人按年齡分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示:

1)求的值;

2)求出樣本的平均數(同一組數據用該區(qū)間的中點值作代表);

3)現在要從年齡較小的第1,2組中用分層抽樣的方法抽取人,再從這人中隨機抽取人進行問卷調查,求第2組中抽到人的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4-4:極坐標與參數方程]

在直角坐標系中,曲線的參數方程為是參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的極坐標方程和曲線的直角坐標方程;

(2)若射線 與曲線交于兩點,與曲線交于兩點,求取最大值時的值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某大型商場的空調在1月到5月的銷售量與月份相關,得到的統(tǒng)計數據如下表:

月份

1

2

3

4

5

銷量(百臺)

0.6

0.8

1.2

1.6

1.8

(1)經分析發(fā)現1月到5月的銷售量可用線性回歸模型擬合該商場空調的月銷量(百件)與月份之間的相關關系.請用最小二乘法求關于的線性回歸方程,并預測6月份該商場空調的銷售量;

(2)若該商場的營銷部對空調進行新一輪促銷,對7月到12月有購買空調意愿的顧客進行問卷調查.假設該地擬購買空調的消費群體十分龐大,經過營銷部調研機構對其中的500名顧客進行了一個抽樣調查,得到如下一份頻數表:

有購買意愿對應的月份

7

8

9

10

11

12

頻數

60

80

120

130

80

30

現采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機抽取6名,再從這6人中隨機抽取3人進行跟蹤調查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.

參考公式與數據:線性回歸方程,其中,.

查看答案和解析>>

同步練習冊答案