設(shè)橢圓以正方形的兩個頂點為焦點且過另外兩個頂點,那么此橢圓的離心率為(    )
A.B.C.D.
D
解:因為橢圓以正方形的兩個頂點為焦點且過另外兩個頂點,那么根據(jù)橢圓的定義,可知此橢圓的離心率為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,曲線是以原點O為中心、為焦點的橢圓的一部分,曲線是以O(shè)為頂點、為焦點的拋物線的一部分,A是曲線的交點
為鈍角.

(1)求曲線的方程;
(2)過作一條與軸不垂直的直線,分別與曲線依次交于B、C、D、E四點,若G為CD中點、H為BE中點,問是否為定值?若是求出定值;若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在同一平面直角坐標(biāo)系中,經(jīng)過伸縮變換后,曲線C變?yōu)榍
則曲線C的方程為(    )
A.25x2+36y2=0B.9x2+100y2="0"
C.10x+24y=0D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知圓方程為:.
(Ⅰ)直線過點,且與圓交于、兩點,若,求直線的方程;
(Ⅱ)過圓上一動點作平行于軸的直線,設(shè)軸的交點為,若向量,求動點的軌跡方程,并說明此軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在橢圓>0,>0)外 ,則過作橢圓的兩條切線的切點為P1、P2,切點弦P1P2的直線方程是,那么類比雙曲線則有如下命題: 若在雙曲線>0,>0)外 ,則過作雙曲線的兩條切線的切點為P1、P2,切點弦P1P2的直線方程是           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)已知橢圓的離心率,過、兩點的直線到原點的距離是
(1)求橢圓的方程 ; 
(2)已知直線交橢圓于不同的兩點、,且、都在以為圓心的圓上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的中心在原點,焦距為4 一條準(zhǔn)線為x="-4" ,則該橢圓的方程為
A.+=1B.+=1C.+=1D.+=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的長軸長是(  )
A.  B.   C.  D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)拋物線的準(zhǔn)線與軸交于,焦點為,以,為焦點,離心率為的橢圓的兩條準(zhǔn)線之間的距離為                                                 (   )
A.4 B.6 C.8D.10

查看答案和解析>>

同步練習(xí)冊答案