【題目】設(shè)函數(shù),其中

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求的取值范圍.

【答案】(1)有極小值,極大值;(2).

【解析】

(1)求出,討論導(dǎo)數(shù)的符號(hào)后可判斷并求出函數(shù)的極值.

(2)在區(qū)間上有兩個(gè)零點(diǎn)等價(jià)于直線與曲線,有且只有兩個(gè)公共點(diǎn),后者可利用導(dǎo)數(shù)討論其單調(diào)性,從而可求實(shí)數(shù)的取值范圍.

(1)當(dāng)時(shí),.

此時(shí),則.

當(dāng)時(shí),,當(dāng)時(shí),,

上單調(diào)遞減,在上單調(diào)遞增.

所以有極小值,有極大值.

(2)由,得.

所以“在區(qū)間上有兩個(gè)零點(diǎn)”等價(jià)于

“直線與曲線,有且只有兩個(gè)公共點(diǎn)”.

.

,解得,.

當(dāng)時(shí),;當(dāng)時(shí),,

,上單調(diào)遞減,在上單調(diào)遞增.

又因?yàn)?/span>,,

所以當(dāng)時(shí),直線與曲線有且只有兩個(gè)公共點(diǎn).

∴當(dāng)時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)是邊長(zhǎng)為2的正三角形的三邊上的動(dòng)點(diǎn),則的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)求的單調(diào)區(qū)間;

(2)若上成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若存在,使得,則實(shí)數(shù)的值為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某賽季甲、乙兩名籃球運(yùn)動(dòng)員每場(chǎng)比賽得分用莖葉圖表示,莖葉圖中甲得分的部分?jǐn)?shù)據(jù)被墨跡污損不清(如圖1),但甲得分的折線圖完好(如圖2),則下列結(jié)論錯(cuò)誤的是(

A.乙運(yùn)動(dòng)員得分的中位數(shù)是17,甲運(yùn)動(dòng)員得分的極差是19

B.甲運(yùn)動(dòng)員發(fā)揮的穩(wěn)定性比乙運(yùn)動(dòng)員發(fā)揮的穩(wěn)定性差

C.甲運(yùn)動(dòng)員得分有的葉集中在莖1

D.甲運(yùn)動(dòng)員得分的平均值一定比乙運(yùn)動(dòng)員得分的平均值低

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有編號(hào)為10個(gè)零件,測(cè)量其直徑(單位:cm),得到下面數(shù)據(jù):

編號(hào)

直徑

1.51

1.49

1.49

1.51

1.49

1.51

1.47

1.46

1.53

1.47

其中直徑在區(qū)間內(nèi)的零件為一等品.

1)上述10個(gè)零件中,隨機(jī)抽取1個(gè),求這個(gè)零件為一等品的概率.

2)從一等品零件中,隨機(jī)抽取2個(gè);

①用零件的編號(hào)列出所有可能的抽取結(jié)果;

②求這2個(gè)零件直徑相等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,為拋物線上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)的直線交拋物線于另一點(diǎn),交軸的正半軸于點(diǎn),且有.當(dāng)點(diǎn)的橫坐標(biāo)為3時(shí),

(Ⅰ)求拋物線的方程;

(Ⅱ)若直線,且和拋物線有且只有一個(gè)公共點(diǎn),試問直線為拋物線上異于原點(diǎn)的任意一點(diǎn))是否過定點(diǎn),若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是自然對(duì)數(shù)的底數(shù),函數(shù)的定義域都是.

(1)求函數(shù)在點(diǎn)處的切線方程;

(2)判斷函數(shù)零點(diǎn)個(gè)數(shù);

(3)用表示的最小值,設(shè),,若函數(shù)上為增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的方程為,長(zhǎng)軸是短軸的倍,且橢圓過點(diǎn),斜率為的直線過點(diǎn),坐標(biāo)平面上的點(diǎn)滿足到直線的距離為定值.

1)寫出橢圓方程;

2)若橢圓上恰好存在個(gè)這樣的點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案