【題目】已知數(shù)列的前項積為,即.
(1)若數(shù)列為首項為2016,公比為的等比數(shù)列,
①求的表達式;②當為何值時, 取得最大值;
(2)當時,數(shù)列都有且成立,
求證: 為等比數(shù)列.
【答案】(1)①;②12;(2)見解析.
【解析】試題分析:
(1)①由題意知,則,化簡可得結論;②記,,即,,作商,計算出的最大值,再由n是奇數(shù)時, 負數(shù),n是偶數(shù)時, 是正數(shù),即可得出結論;
(2) 當時, 易得;由得,當時, ,兩式相除,化簡可得,可得,這兩式相除,則易得結論.
試題解析:
(1)①由題意知,
所以
②記,,即,,
,當時, ;當時, ,
又因為,所以,當時, ;當時, ,所以的最大值為
此時,而,所以.
而,
所以,當時, 取得最大值
(2)當時, ,所以,即,
已知①
當時,
①②兩式相除得,化簡得,③
又因為,④
③兩式相除得,⑤
⑤式可化為: ,
令,所以,所以,
即,都成立,
所以為等比數(shù)列.
科目:高中數(shù)學 來源: 題型:
【題目】設A,B為曲線C:y=上兩點,A與B的橫坐標之和為4.
(1)求直線AB的斜率;
(2)設M為曲線C上一點,C在M處的切線與直線AB平行,且AMBM,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如下圖,在四棱錐中,底面是邊長為的正方形,平面平面, , 為中點,且.
(Ⅰ)求證: 平面;
(Ⅱ)求證: ;
(Ⅲ)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(x)是定義在R上的增函數(shù),函數(shù)y=f(x﹣1)的圖象關于(1,0)對稱.若對任意的x,y∈R,不等式f(x2﹣6x+21)+f(y2﹣8y)<0恒成立,則當x>3時,x2+y2的取值范圍是( )
A.(9,25)
B.(13,49)
C.(3,7)
D.(9,49)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,平面,四邊形是直角梯形,.
(1)求二面角的余弦值;
(2)設是棱上一點,是的中點,若與平面所成角的正弦值為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了得到函數(shù)y=sin2x的圖象,只需把函數(shù)y=sin(2x﹣ )的圖象( )
A.向左平移 個單位長度
B.向右平移 個單位長度
C.向左平移 個單位長度
D.向右平移 個單位長度
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲罐中有4個紅球,3個白球和3個黑球;乙罐中有5個紅球,3個白球和2個黑球.先從甲罐中隨機取出一球放入乙罐,分別以A1、A2和A3表示由甲罐取出的球是紅球,白球和黑球的事件;再從乙罐中隨機取出一球,以B表示由乙罐取出的球是紅球的事件,下列的結論:
①P(B)= ;
②P(B|A1)= ;
③事件B與事件A1不相互獨立;
④A1 , A2 , A3是兩兩互斥的事件;
⑤P(B)的值不能確定,因為它與A1 , A2 , A3中哪一個發(fā)生有關,
其中正確結論的序號為 . (把正確結論的序號都填上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為宣傳3月5日學雷鋒紀念日,重慶二外在高一,高二年級中舉行學雷鋒知識競賽,每年級出3人組成甲乙兩支代表隊,首輪比賽每人一道必答題,答對則為本隊得1分,答錯不答都得0分,已知甲隊3人每人答對的概率分別為,乙隊每人答對的概率都是.設每人回答正確與否相互之間沒有影響,用表示甲隊總得分.
(1)求隨機變量的分布列及其數(shù)學期望;
(2)求甲隊和乙隊得分之和為4的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com