【題目】已知曲線C: + =1,直線l: (t為參數(shù))
(1)寫(xiě)出曲線C的參數(shù)方程,直線l的普通方程.
(2)過(guò)曲線C上任意一點(diǎn)P作與l夾角為30°的直線,交l于點(diǎn)A,求|PA|的最大值與最小值.
【答案】
(1)解:對(duì)于曲線C: + =1,可令x=2cosθ、y=3sinθ,
故曲線C的參數(shù)方程為 ,(θ為參數(shù)).
對(duì)于直線l: ,
由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;
(2)解:設(shè)曲線C上任意一點(diǎn)P(2cosθ,3sinθ).
P到直線l的距離為 .
則 ,其中α為銳角.
當(dāng)sin(θ+α)=﹣1時(shí),|PA|取得最大值,最大值為 .
當(dāng)sin(θ+α)=1時(shí),|PA|取得最小值,最小值為 .
【解析】(1)聯(lián)想三角函數(shù)的平方關(guān)系可取x=2cosθ、y=3sinθ得曲線C的參數(shù)方程,直接消掉參數(shù)t得直線l的普通方程;(2)設(shè)曲線C上任意一點(diǎn)P(2cosθ,3sinθ).由點(diǎn)到直線的距離公式得到P到直線l的距離,除以sin30°進(jìn)一步得到|PA|,化積后由三角函數(shù)的范圍求得|PA|的最大值與最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的參數(shù)方程為 (α為參數(shù),α∈[0,π]),直線l的極坐標(biāo)方程為 .
(1)寫(xiě)出曲線C的普通方程和直線l的直角坐標(biāo)方程;
(2)P為曲線C上任意一點(diǎn),Q為直線l任意一點(diǎn),求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,以為概率的事件是( )
A. 恰有1件一等品 B. 至少有一件一等品
C. 至多有一件一等品 D. 都不是一等品
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某百貨公司1~6月份的銷售量與利潤(rùn)的統(tǒng)計(jì)數(shù)據(jù)如表:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
銷售量x/萬(wàn)件 | 10 | 11 | 13 | 12 | 8 | 6 |
利潤(rùn)y/萬(wàn)元 | 22 | 25 | 29 | 26 | 16 | 12 |
(1)根據(jù)2~5月份的統(tǒng)計(jì)數(shù)據(jù),求出y關(guān)于x的回歸直線方程x+;
(2)若由回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2萬(wàn)元,則認(rèn)為得到的回歸直線方程是理想的,試問(wèn)所得回歸直線方程是否理想?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人都準(zhǔn)備于下午12:00-13:00之間到某車(chē)站乘某路公交車(chē)外出,設(shè)在12:00-13:00之間有四班該路公交車(chē)開(kāi)出,已知開(kāi)車(chē)時(shí)間分別為12:20,12:30,12:40,13:00,分別求他們?cè)谙率銮闆r下坐同一班車(chē)的概率.
(1)他們各自選擇乘坐每一班車(chē)是等可能的;
(2)他們各自到達(dá)車(chē)站的時(shí)刻是等可能的(有車(chē)就乘).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐,側(cè)面是邊長(zhǎng)為2的正三角形,且與底面垂直,底面是的菱形,為的中點(diǎn).
(1)在棱上是否存在一點(diǎn),使得,,,四點(diǎn)共面?若存在,指出點(diǎn)的位置并說(shuō)明;若不存在,請(qǐng)說(shuō)明理由;
(2)求點(diǎn)平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1, =9a2a6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是李強(qiáng)同學(xué)數(shù)學(xué)作業(yè)本上的一道題,請(qǐng)你幫他完成下面的題目.
(題目)求函數(shù)f(x)=,x∈R,在x=0,1,2處的函數(shù)值和值域
(解答)(一)計(jì)算f(0)、f(1)、f(2).
(二)總結(jié):容易看出,這個(gè)函數(shù)當(dāng)x=0時(shí),有最大值__________,當(dāng)自變量x的絕對(duì)值逐漸__________(選填“變大”或“變小”)時(shí),函數(shù)值逐漸變小并趨向于0,但__________(選填“永遠(yuǎn)不會(huì)”或“可能會(huì)”)等于0,于是可知該函數(shù)的值域?yàn)榧希?/span>
{y|y=f(x),__________}=____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直四棱柱ABCD﹣A1B1C1D1內(nèi)接于半徑為 的半球O,四邊形ABCD為正方形,則該四棱柱的體積最大時(shí),AB的長(zhǎng)是( )
A.1
B.
C.
D.2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com