半徑為5的圓過點A(-2, 6),且以M(5, 4)為中點的弦長為2,求此圓的方程。

解:設圓心坐標為P(a, b), 則圓的方程是(xa)2+(yb)2=25,

      ∵ (-2, 6)在圓上,∴ (a+2)2+(b-6)2=25, 又以M(5, 4)為中點的弦長為2, 

∴ |PM|2=r22, 即(a-5)2+(b-4)2=20,

      聯(lián)立方程組, 兩式相減得7a-2b=3, 將b=代入 

      得  53a2-194a+141=0, 解得a=1或a=, 相應的求得b1=2, b2=,

    ∴ 圓的方程是(x-1)2+(y-2)2=25或(x)2+(y)2=25

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

半徑為5的圓過點A(-2,6),且以M(5,4)為中點的弦長為2
5
,求此圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

半徑為5的圓過點A(-2,6),且以M(5,4)為中點的弦長為2
5
,求此圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:同步題 題型:解答題

半徑為5的圓過點A(-2,6),且以M(5,4)為中點的弦長為2,求此圓的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

半徑為5的圓過點A(-2,6),且以M(5,4)為中點的弦長為2,求此圓的方程.

查看答案和解析>>

同步練習冊答案