已知球O的半徑為4,圓M與圓N為該球的兩個小圓,AB為圓M與圓N的公共弦,AB=4,若OM=ON=3,則兩圓圓心的距離MN= .

3

【解析】

試題分析:根據(jù)題意畫出圖形,欲求兩圓圓心的距離,將它放在與球心組成的三角形MNO中,只要求出球心角即可,通過球的性質(zhì)構(gòu)成的直角三角形即可解得.

解法一:∵ON=3,球半徑為4,

∴小圓N的半徑為,

∵小圓N中弦長AB=4,作NE垂直于AB,

∴NE=,同理可得,在直角三角形ONE中,

∵NE=,ON=3,

,

∴MN=3.

故填:3.

解法二:如下圖:設(shè)AB的中點為C,則OC與MN必相交于MN中點為E,因為OM=ON=3,

故小圓半徑NB為

C為AB中點,故CB=2;所以NC=,

∵△ONC為直角三角形,NE為△ONC斜邊上的高,OC=

∴MN=2EN=2•CN•=2××=3

故填:3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年天津市高三上學(xué)期第二次月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

定義行列式運算=.將函數(shù)的圖象向左平移個單位,以下是所得函數(shù)圖象的一個對稱中心是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年上海市高二上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:填空題

已知等比數(shù)列,,則使不等式成立的最大自然數(shù)為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年北師大版選修4-1 2.3柱面與平面的截面練習(xí)卷(解析版) 題型:填空題

(2003•北京)如圖,已知底面半徑為r的圓柱被一個平面所截,剩下部分母線長的最大值為a,最小值為b,那么圓柱被截后剩下部分的體積是 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年北師大版選修4-1 2.2直線與球、平面與球位置關(guān)系(解析版) 題型:填空題

(2008•嘉定區(qū)一模)連接球面上任意兩點的線段稱為球的弦,已知半徑為5的球上有兩條長分別為6和8的弦,則此兩弦中點距離的最大值是 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年北師大版選修4-1 2.2直線與球、平面與球位置關(guān)系(解析版) 題型:選擇題

三個半徑為R的球互相外切,且每個球都同時與另兩個半徑為r的球外切.如果這兩個半徑為r的球也互相外切,則R與r的關(guān)系是( )

A.R=r B.R=2r C.R=3r D.R=6r

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年北師大版選修4-1 2.2直線與球、平面與球位置關(guān)系(解析版) 題型:選擇題

(2011•遂寧二模)點P在直徑為的球面上,過P作兩兩垂直的三條弦,若其中一條弦長是另一條弦長的2倍,則這三條弦長之和的最大值是( )

A. B.6 C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年北師大版選修2-3 2.2超幾何分布練習(xí)卷(解析版) 題型:填空題

(2010•上海模擬)在10件產(chǎn)品中有2件次品,任意抽取3件,則抽到次品個數(shù)的數(shù)學(xué)期望的值是 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年北師大版選修2-2 2.4導(dǎo)數(shù)的四則運算法則練習(xí)卷(解析版) 題型:?????

(2013•杭州模擬)函數(shù)y=xsin2x的導(dǎo)數(shù)是( )

A.y′=sin2x﹣xcos2x

B.y′=sin2x﹣2xcos2x

C.y′=sin2x+xcos2x

D.y′=sin2x+2xcos2x

查看答案和解析>>

同步練習(xí)冊答案