【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱與底面垂直,體積為 ,底面是邊長為 的正三角形,若P為底面A1B1C1的中心,則PA與平面A1B1C1所成角的大小為( )
A.
B.
C.
D.

【答案】B
【解析】解:如圖所示,
∵AA1⊥底面A1B1C1 , ∴∠APA1為PA與平面A1B1C1所成角,
∵平面ABC∥平面A1B1C1 , ∴∠APA1為PA與平面ABC所成角.
= =
∴V三棱柱ABCA1B1C1= = ,解得
又P為底面正三角形A1B1C1的中心,∴ = =1,
在Rt△AA1P中, ,

故選B.

【考點精析】通過靈活運用空間角的異面直線所成的角,掌握已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下四個結(jié)論:

①函數(shù)是偶函數(shù);

②當(dāng)時,函數(shù)的值域是

③若扇形的周長為,圓心角為,則該扇形的弧長為6 cm;

④已知定義域為的函數(shù),當(dāng)且僅當(dāng)時,成立.

則上述結(jié)論中正確的是______(寫出所有正確結(jié)論的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:萬元)對年銷售量(單位:)的影響,對近年的年宣傳費和年銷售量作了初步統(tǒng)計和處理,得到的數(shù)據(jù)如下:

年宣傳費(單位:萬元)

年銷售量(單位:

.

(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點圖;

(2)求出關(guān)于的線性回歸方程;

(3)若公司計劃下一年度投入宣傳費萬元,試預(yù)測年銷售量的值.

參考公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(cosx,﹣ ), =( sinx,cos2x),x∈R,設(shè)函數(shù)f(x)=
(1)求f(x)的最小正周期.
(2)求f(x)在[0, ]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱柱ABCD﹣A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,
(1)證明:A1C⊥平面BB1D1D;

(2)求平面OCB1與平面BB1D1D的夾角θ的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列題目的證法,再解決后面的問題.

已知a1,a2∈R,且a1+a2=1,求證:a+a.

證明:構(gòu)造函數(shù)f(x)=(x-a1)2+(x-a2)2,則f(x)=2x2-2(a1+a2)x+a+a=2x2-2x+a+a.

因為對一切x∈R,恒有f(x)≥0,

所以Δ=4-8(a+a)≤0,從而得a+a.

(1)若a1,a2,…,an∈R,a1+a2+…+an=1,請由上述結(jié)論寫出關(guān)于a1,a2,…,an的推廣式;

(2)參考上述證法,請對你推廣的結(jié)論加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)求不等式的解集;

(2)解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

圍建一個面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進出口,如圖所示,已知舊墻的維修費用為45/m,新墻的造價為180/m,設(shè)利用的舊墻的長度為x(單位:元)。

)將y表示為x的函數(shù);

)試確定x,使修建此矩形場地圍墻的總費用最小,并求出最小總費用。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點.

(1)求證:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求證:二面角C﹣PB﹣A的余弦值.

查看答案和解析>>

同步練習(xí)冊答案