(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)
已知函數(shù)
(1)判斷并證明在上的單調(diào)性;
(2)若存在,使,則稱為函數(shù)的不動點(diǎn),現(xiàn)已知該函數(shù)有且僅有一個不動點(diǎn),求的值;
(3)若在上恒成立 , 求的取值范圍.
略
【解析】(1)
對任意的------------------------------------------- 1分
-------------------------------- 3分
∵
∴
∴,函數(shù)在上單調(diào)遞增。----------------5分
(2)解:令,------------------------------------7分
令(負(fù)值舍去)--------------------------------------9分
將代入得--------10分
(3)∵ ∴ ----------------------------------------12分
∵ ∴(等號成立當(dāng))--------------------14分
∴的取值范圍是-------- 16分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分,第一小題8分;第二小題8分)
已知是軸正方向的單位向量,設(shè)=, =,且滿足.
求點(diǎn)的軌跡方程;
過點(diǎn)的直線交上述軌跡于兩點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市高三第三次月考試題文科數(shù)學(xué) 題型:解答題
. (本題滿分16分,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分)
已知公差大于零的等差數(shù)列的前項(xiàng)和為,且滿足,,
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列是等差數(shù)列,且,求非零常數(shù);
(3)若(2)中的的前項(xiàng)和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海市長寧區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題
(本題滿分16分,第(1)小題4分,第(2)小題6分,第(2)小題6分)
在平行四邊形中,已知過點(diǎn)的直線與線段分別相交于點(diǎn)。若。
(1)求證:與的關(guān)系為;
(2)設(shè),定義在上的偶函數(shù),當(dāng)時,且函數(shù)圖象關(guān)于直線對稱,求證:,并求時的解析式;
(3)在(2)的條件下,不等式在上恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(理) 題型:解答題
(本題滿分16分;第(1)小題5分,第(2)小題5分,第(3)小題6分)
設(shè)、為坐標(biāo)平面上的點(diǎn),直線(為坐標(biāo)原點(diǎn))與拋物線交于點(diǎn)(異于).
(1) 若對任意,點(diǎn)在拋物線上,試問當(dāng)為何值時,點(diǎn)在某一圓上,并求出該圓方程;
(2) 若點(diǎn)在橢圓上,試問:點(diǎn)能否在某一雙曲線上,若能,求出該雙曲線方程,若不能,說明理由;
(3) 對(1)中點(diǎn)所在圓方程,設(shè)、是圓上兩點(diǎn),且滿足,試問:是否存在一個定圓,使直線恒與圓相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題
(本題滿分16分,第一小題8分;第二小題8分)
已知是軸正方向的單位向量,設(shè)=, =,且滿足.
(1) 求點(diǎn)的軌跡方程;
(2) 過點(diǎn)的直線交上述軌跡于兩點(diǎn),且,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com