【題目】在如圖所示的程序框圖中,若函數(shù)f(x)= ,則輸出的結果是(
A.16
B.8
C.216
D.28

【答案】A
【解析】解:模擬執(zhí)行程序框圖,可得

a=﹣16≤0,

執(zhí)行循環(huán)體,b=log 16=14<0,a=log 4=﹣2<0,

不滿足條件a>4,執(zhí)行循環(huán)體,b=log 2=﹣1<0,a=log 1=0,

不滿足條件a>4,執(zhí)行循環(huán)體,b=2°=1>0,a=21=2,

不滿足條件a>4,執(zhí)行循環(huán)體,b=22=4>0,a=24=16,

滿足條件a>4,退出循環(huán),輸出a的值為16.

故選:A.

【考點精析】通過靈活運用程序框圖,掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+ )(x∈R,ω>0)的最小正周期為π,將y=f(x)的圖象向左平移|φ|個單位長度,所得函數(shù)y=f(x)為偶函數(shù)時,則φ的一個值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中有6個編號不同的黑球和3個編號不同的白球,這9個球的大小及質地都相同,現(xiàn)從該袋中隨機摸取3個球,則這三個球中恰有兩個黑球和一個白球的方法總數(shù)是 , 設摸取的這三個球中所含的黑球數(shù)為X,則P(X=k)取最大值時,k的值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|,不等式f(x)≤3的解集為[﹣1,5].
(Ⅰ)求實數(shù)a的值;
(Ⅱ)若f(x)+f(x+5)≥m對一切實數(shù)x恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F(xiàn),G,H分別為BP,BE,PC的中點.
(1)求證:GH∥平面ADPE;
(2)M是線段PC上一點,且PM= ,求二面角C﹣EF﹣M的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a,b,c分別是內角A,B,C的對邊,且(a+c)2=b2+3ac.
(Ⅰ)求角B的大。
(Ⅱ)若b=2,且sinB+sin(C﹣A)=2sin2A,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩條直線m,n和兩個不同平面α,β,滿足α⊥β,α∩β=l,m∥α,n⊥β,則(
A.m∥n
B.m⊥n
C.m∥l
D.n⊥l

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角梯形ABCD中,AB⊥AD,AD∥BC,AB=BC=2AD=2,E,F(xiàn)分別為BC,CD的中點,以A為圓心,AD為半徑的半圓分別交BA及其延長線于點M,N,點P在 上運動(如圖).若 ,其中λ,μ∈R,則2λ﹣5μ的取值范圍是(
A.[﹣2,2]
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】秦九韶是我國南宋時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入x的值為2,則輸出的v值為(
A.9×210﹣2
B.9×210+2
C.9×211+2
D.9×211﹣2

查看答案和解析>>

同步練習冊答案