【題目】設(shè)橢圓的左右焦點(diǎn)分別為,,點(diǎn)滿足

() 求橢圓的離心率;

() 設(shè)直線與橢圓相交于兩點(diǎn),若直線與圓相交于,兩點(diǎn),且,求橢圓的方程.

【答案】() ()

【解析】

試題分析:)直接利用|PF2|=|F1F2|,對(duì)應(yīng)的方程整理后即可求橢圓的離心率e;()先把直線PF2與橢圓方程聯(lián)立求出A,B兩點(diǎn)的坐標(biāo)以及對(duì)應(yīng)的|AB|兩點(diǎn),進(jìn)而求出|MN|,再利用弦心距,弦長以及圓心到直線的距離之間的等量關(guān)系,即可求橢圓的方程

試題解析:()設(shè)

因?yàn)?/span>,則,

,有,即(舍去)或

所以橢圓的離心率為

() 解.因?yàn)?/span>,所以,.所以橢圓方程為

直線的斜率,則直線的方程為

兩點(diǎn)的坐標(biāo)滿足方程組

消去并整理得.則,

于是 不妨設(shè),

所以

于是

圓心到直線的距離,

因?yàn)?/span>,所以,即,

解得(舍去),或.于是,

所以橢圓的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線的左焦點(diǎn)在直線

1若直線與曲線交于兩點(diǎn),求的值;

2求曲線的內(nèi)接矩形的周長的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄A過定點(diǎn),且與直線相切.

(1)求動(dòng)圓圓心的軌跡的方程;

(2)過(1)中軌跡上的點(diǎn)作兩條直線分別與軌跡相交于兩點(diǎn),試探究:當(dāng)直線的斜率存在且傾斜角互補(bǔ)時(shí),直線的斜率是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓)的右焦點(diǎn)為,右頂點(diǎn)為已知,其中為坐標(biāo)原點(diǎn),為橢圓的離心率

(1)求橢圓的方程;

(2)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn)不在軸上),垂直于的直線與交于點(diǎn)軸交于點(diǎn),,,求直線的斜率的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面,的中點(diǎn),是棱上的點(diǎn),,

1求證:平面平面;

2,求二面角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)AB兩種產(chǎn)品,生產(chǎn)1A種產(chǎn)品需要煤4噸、電18千瓦;生產(chǎn)1B種產(chǎn)品需要煤1噸、電15千瓦現(xiàn)因條件限制,該企業(yè)僅有煤10并且供電局只能供電66千瓦,若生產(chǎn)1A種產(chǎn)品的利潤為10000元;生產(chǎn)1B種產(chǎn)品的利潤是5000元,試問該企業(yè)如何安排生產(chǎn),才能獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

I若函數(shù)在點(diǎn)處的切線方程為,求的值;

II若在區(qū)間上,函數(shù)的圖象恒在直線下方,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2是否存在實(shí)數(shù),使恒成立,若存在,求出實(shí)數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線過點(diǎn),與軸,軸的正半軸分布交于兩點(diǎn),為坐標(biāo)原點(diǎn).

(1)當(dāng)直線的斜率時(shí),求的外接圓的面積;

(2)當(dāng)的面積最小時(shí),求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案