已知雙曲線C的中心是原點(diǎn),右焦點(diǎn)為F,一條漸近線m:,設(shè)過點(diǎn)A的直線l的方向向量。

(1)    求雙曲線C的方程; 

(2)    若過原點(diǎn)的直線,且a與l的距離為,求K的值;

(3)    證明:當(dāng)時(shí),在雙曲線C的右支上不存在點(diǎn)Q,使之到直線l的距離為.

【解】(1)設(shè)雙曲線的方程為

   ,解額雙曲線的方程為

(2)直線,直線

由題意,得,解得

(3)【證法一】設(shè)過原點(diǎn)且平行于的直線

則直線的距離當(dāng)時(shí),

又雙曲線的漸近線為

  雙曲線的右支在直線的右下方,

  雙曲線右支上的任意點(diǎn)到直線的距離大于

故在雙曲線的右支上不存在點(diǎn),使之到直線的距離為

【證法二】假設(shè)雙曲線右支上存在點(diǎn)到直線的距離為,

由(1)得

設(shè),

當(dāng)時(shí),;

代入(2)得

,

  方程不存在正根,即假設(shè)不成立,

故在雙曲線的右支上不存在點(diǎn),使之到直線的距離為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C的中心是原點(diǎn),右焦點(diǎn)為F(
3
,0)
,一條漸近線m:x+
2
y=0,設(shè)過點(diǎn)A(-3
2
,0)的直線l的方向向量e=(1,k),
(1)求雙曲線C的方程;
(2)若過原點(diǎn)的直線a∥l,且a與l的距離為
6
,求k的值;
(3)證明:當(dāng)k>
2
2
時(shí),在雙曲線C的右支上不存在點(diǎn)Q,使之到直線l的距離為
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C的中心是原點(diǎn),右焦點(diǎn)為F(
3
,0)
,焦點(diǎn)到一條漸近線距離為
2
,則雙曲線C的漸近線方程為( 。
A、y=±
3
x
B、y=±x
C、x=±
2
2
y
D、x=±
2
y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分4分,第3小題滿分8分。

已知雙曲線C的中心是原點(diǎn),右焦點(diǎn)為F,一條漸近線m:,設(shè)過點(diǎn)A的直線l的方向向量。

(1)求雙曲線C的方程;

(2)若過原點(diǎn)的直線,且al的距離為,求K的值;

(3)證明:當(dāng)時(shí),在雙曲線C的右支上不存在點(diǎn)Q,使之到直線l的距離為。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河南省高二上學(xué)期12月份考試數(shù)學(xué)卷(文理) 題型:解答題

(12分)已知雙曲線C的中心是原點(diǎn),右焦點(diǎn)為F(,0),一條漸近線m:x+y=0,設(shè)過點(diǎn)A(-3,0)的直線l

(1)求雙曲線C的方程;

(2)若過原點(diǎn)的直線a∥l,且a與l的距離為,求k的值;

(3)證明:當(dāng)k>時(shí),在雙曲線C的右支上不存在點(diǎn)Q,使之到直線l的距離為.

 

查看答案和解析>>

同步練習(xí)冊答案