設(shè)函數(shù)f(x)=lnx-ax.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若a=,g(x)=x(f(x)+1),(x>1)且g(x)在區(qū)間(k,k+1)內(nèi)存在極值,求整數(shù)k的值.
【答案】分析:(I)首先求出函數(shù)的導(dǎo)數(shù),然后根據(jù)導(dǎo)數(shù)與單調(diào)區(qū)間的關(guān)系確定函數(shù)的單調(diào)區(qū)間.
(Ⅱ)當(dāng)a=時(shí),g(x)=x(f(x)+1)=x(lnx-x+1)=xlnx+x-x2,(x>1),令F(x)=g′(x)=lnx-x+2,利用導(dǎo)數(shù)可得F(x)在(1,+∞)內(nèi)單調(diào)遞減,再利用零點(diǎn)存在定理得出F(x)即g′(x)在(3,4)內(nèi)有零點(diǎn),從而g′(x)在(3,4)內(nèi)存在極值,結(jié)合已知條件求出整數(shù)k的值.
解答:解:(Ⅰ)∵x>0,所以當(dāng)a≤0時(shí),f′(x)=-a>0,f(x)在(0,+∞)是增函數(shù)…(4分)
當(dāng)a>0時(shí),f(x)在(0,)上f′(x)=-a>0,f(x)在(,+∞)上f′(x)=-a<0,
故f(x)在(0,)上是增函數(shù),f(x)在(,+∞)上是減函數(shù).
(Ⅱ)當(dāng)a=時(shí),g(x)=x(f(x)+1)=x(lnx-x+1)=xlnx+x-x2,(x>1)
∴g′(x)=lnx-x+2…(6分)
令F(x)=g′(x)=lnx-x+2,
則f′(X)=-1<0,∴F(x)在(1,+∞)內(nèi)單調(diào)遞減.…(8分)
∵F(1)=1>0.F(2)=ln2>0,F(xiàn)(3)=g′(3)=ln3-3+2=ln3-1>0.
F(4)=g′(4)=ln4-4+2=ln4-2<0,(9分)
∴F(x)即g′(x)在(3,4)內(nèi)有零點(diǎn),即g′(x)在(3,4)內(nèi)存在極值.…(11分)
又∵g(x)在(k,k+1)上存在極值,且k∈Z,
∴k=3.…(12分)
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,會(huì)熟練運(yùn)用導(dǎo)數(shù)解決函數(shù)的極值問(wèn)題.求函數(shù)的單調(diào)區(qū)間,應(yīng)該先求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)函數(shù)大于0得到函數(shù)的遞增區(qū)間,令導(dǎo)函數(shù)小于0得到函數(shù)的遞減區(qū)間.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ln(x+a)+x2
(I)若當(dāng)x=-1時(shí),f(x)取得極值,求a的值,并討論f(x)的單調(diào)性;
(II)若f(x)存在極值,求a的取值范圍,并證明所有極值之和大于ln
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)設(shè)函數(shù)f(x)=ln(1+x)-
2x
x+2
,證明:當(dāng)x>0時(shí),f(x)>0;
(Ⅱ)從編號(hào)1到100的100張卡片中每次隨機(jī)抽取一張,然后放回,用這種方式連續(xù)抽取20次,設(shè)抽得的20個(gè)號(hào)碼互不相同的概率為P.證明:P<(
9
10
)
19
1
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•楊浦區(qū)一模)設(shè)函數(shù)f(x)=ln(x2-x-6)的定義域?yàn)榧螦,集合B={x|
5x+1
>1}.請(qǐng)你寫(xiě)出一個(gè)一元二次不等式,使它的解集為A∩B,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ln(x+a)+x2(a>
2
)
,
(1)若a=
3
2
,解關(guān)于x不等式f(e
x
-
3
2
)<ln2+
1
4

(2)證明:關(guān)于x的方程2x2+2ax+1=0有兩相異解,且f(m)和f(n)分別是函數(shù)f(x)的極小值和極大值(m,n為該方程兩根,且m>n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ln(x+a)+2x2
(1)若當(dāng)x=-1時(shí),f(x)取得極值,求a的值;
(2)在(1)的條件下,方程ln(x+a)+2x2-m=0恰好有三個(gè)零點(diǎn),求m的取值范圍;
(3)當(dāng)0<a<1時(shí),解不等式f(2x-1)<lna.

查看答案和解析>>

同步練習(xí)冊(cè)答案