分析 連接AC,如圖所示,在三角形ABC和三角形ADC中,分別利用余弦定理列出關(guān)系式,整理得到15cosD-8cosB=7;利用三角形面積公式表示出S,整理得到8sinB+15sinD=2S,兩關(guān)系式聯(lián)立表示出S2,利用余弦函數(shù)的值域確定出S最大值即可.
解答 解:連接AC,設(shè)AC=x,
在△ABC中,由余弦定理得:x2=22+42-2×2×4cosB=20-16cosB①,
在△ADC中,由余弦定理得:x2=32+52-2×3×5cosD=34-30cosD②,
由①②得:15cosD-8cosB=7③,
四邊形ABCD面積S=$\frac{1}{2}$×2×4sinB+$\frac{1}{2}$×3×5sinD=$\frac{1}{2}$(8sinB+15sinD),
整理得:8sinB+15sinD=2S④,
將③④兩式平方相加得:64+225+240(sinBsinD-cosBcosD)=49+4S2,
整理得:S2=60-60cos(B+D),
∵-1≤cos(B+D)≤1,即0<S2≤120,
當(dāng)cos(B+D)=-1,即B+D=π時(shí),(S2)max=120,即Smax=2$\sqrt{30}$,
則S的最大值為2$\sqrt{30}$.
點(diǎn)評 此題考查了余弦定理,余弦函數(shù)的值域,以及三角形面積公式,熟練掌握余弦定理是解本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1} | B. | {0,3} | C. | {2,4} | D. | {0,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com