精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=x3+ax2+ax-2(a∈R),

(1)若函數f(x)在區(qū)間(-∞,+∞)上為單調增函數,求實數a的取值范圍;

(2)設A(x1,f(x1))、B(x2,f(x2))是函數f(x)的兩個極值點,若直線AB的斜率不小于-,求實數a的取值范圍.

解:(1)因為函數f(x)在(-∞,+∞)上為單調遞增函數,

所以f′(x)=x2+ax+a>0在(-∞,+∞)上恒成立.

由Δ=a2-4a<0,解得0<a<4.                                                

又當a=0時,f(x)=x3-2在(-∞,+∞)上為單調遞增函數;

當a=4時,f(x)=x3+2x2+4x-2=(x+2)3-在(-∞,+∞)上為單調遞增函數,

所以0≤a≤4.                                                           

(2)依題意,方程f′(x)=0有兩個不同的實數根x1、x2,

由Δ=a2-4a>0,解得a<0或a>4,且x1+x2=-a,x1x2=a.                          

所以f(x1)-f(x2)=[(x12+x1x2+x22)+a(x1+x2)+a](x1-x2).

所以=[(x1+x2)2-x1x2]+a(x1+x2)+a=(a2-a)+a(-a)+a=-a2+a≥-.

解之,得-1≤a≤5.

所以實數a的取值范圍是-1≤a<0或4<a≤5.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=x-2m2+m+3(m∈Z)為偶函數,且f(3)<f(5).
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實數a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,請求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:浙江省東陽中學高三10月階段性考試數學理科試題 題型:022

已知函數f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數f(x)在D上的最小值,max{f(x)|x∈D}表示函數f(x)在D上的最大值,若存在最小正整數k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數f(x)為[a,b]上的“k階收縮函數”.已知函數f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數”,則k的值是_________.

查看答案和解析>>

科目:高中數學 來源:上海模擬 題型:解答題

已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:2009-2010學年河南省許昌市長葛三高高三第七次考試數學試卷(理科)(解析版) 題型:選擇題

已知函數f(x)、g(x),下列說法正確的是( )
A.f(x)是奇函數,g(x)是奇函數,則f(x)+g(x)是奇函數
B.f(x)是偶函數,g(x)是偶函數,則f(x)+g(x)是偶函數
C.f(x)是奇函數,g(x)是偶函數,則f(x)+g(x)一定是奇函數或偶函數
D.f(x)是奇函數,g(x)是偶函數,則f(x)+g(x)可以是奇函數或偶函數

查看答案和解析>>

同步練習冊答案