精英家教網 > 高中數學 > 題目詳情

判斷下列函數的奇偶性:

(1)f(x)x4x;

(2)f(x)

(3)f(x)lg(x)

 

1既不是奇函數也不是偶函數2奇函數3奇函數

【解析】(1)定義域為R,f(1)0,f(1)2,由于f(1)≠f(1),f(1)≠f(1),所以f(x)既不是奇函數也不是偶函數;

(2)因為函數f(x)的定義域是(,0)∪(0,∞)并且當x0,x0所以f(x)=-(x)2(x)=-(x2x)=-f(x)(x0).當x0,x0,所以f(x)(x)2(x)=-(x2x)=-f(x)(x0).故函數f(x)為奇函數.

(3)x>0,x∈R,f(x)f(x)lg(x)lg(x)lg10所以f(x)=-f(x),所以f(x)為奇函數.

 

練習冊系列答案
相關習題

科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第二章第8課時練習卷(解析版) 題型:填空題

已知函數f(x)a是奇函數,則常數a________.

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第二章第5課時練習卷(解析版) 題型:填空題

函數y的圖象大致為________(填序號)

 

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第二章第4課時練習卷(解析版) 題型:填空題

已知f(x)R上最小正周期為2的周期函數且當0≤x2,f(x)x3x則函數yf(x)的圖象在區(qū)間[0,6]上與x軸的交點個數為________

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第二章第4課時練習卷(解析版) 題型:解答題

f(x)是定義在R上的奇函數,且對任意實數x恒有f(x2)=-f(x),x∈[0,2]f(x)2xx2.

(1)求證:f(x)是周期函數;

(2)x∈[24],f(x)的解析式;

(3)計算f(0)f(1)f(2)f(2014)的值.

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第二章第4課時練習卷(解析版) 題型:填空題

函數f(x)x3x的圖象關于________對稱.

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第二章第3課時練習卷(解析版) 題型:填空題

“a≤0”函數f(x)|(ax1)x|在區(qū)間是(0,∞)內單調遞增________條件.

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第二章第2課時練習卷(解析版) 題型:填空題

函數f(x)的值域為________

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第二章第14課時練習卷(解析版) 題型:解答題

已知函數f(x)ax2|x|2a1(a為實常數)

(1)a1作函數f(x)的圖象;

(2)f(x)在區(qū)間[1,2]上的最小值為g(a),g(a)的表達式;

(3)h(x),若函數h(x)在區(qū)間[12]上是增函數,求實數a的取值范圍.

 

查看答案和解析>>

同步練習冊答案