求與向量
a
=(1,2)
,
b
=(2,1)
夾角相等的單位向量
c
的坐標(biāo).
分析:設(shè)
c
=(x,y)
,則cos<
a
c
>=cos
b
,
c
可得
x+2y=2x+y
x2+y2=1
,解方程可求
解答:解:設(shè)
c
=(x,y)
,則cos<
a
,
c
>=cos
b
,
c
(2分)
x+2y=2x+y
x2+y2=1

x=
2
2
y=
2
2
x=-
2
2
y=-
2
2
(8分)
c
=(
2
2
,
2
2
)
,
c
=(-
2
2
,-
2
2
)
(10分)
點(diǎn)評(píng):本題主要考查了向量數(shù)量積性質(zhì)的坐標(biāo)表示的應(yīng)用,解題的關(guān)鍵是熟練應(yīng)用公式
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將圓x2+y2-2x+4y=0按向量
a
=(-1,2)
平移后得到圓O,直線l與圓O相交于A、B,若在圓O上存在點(diǎn)C,使
OC
=
OA
+
OB
a
,求直線l的方程及對(duì)應(yīng)的點(diǎn)C坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把函數(shù)y=lnx-2的圖象按向量
a
=(-1,2)
平移得到函數(shù)y=f(x)的圖象.
(I)若x>0,試比較f(x)與
2x
x+2
的大小,并說(shuō)明理由;
(II)若不等式
1
2
x2≤f(x2)+m2-2bm-3
.當(dāng)x,b∈[-1,1]時(shí)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知向量
a
=(-1,2)
,又點(diǎn)A(8,0),B(n,t),C(ksinθ,t).
(1)若
AB
a
,且|
AB
|=
5
|
OA
|
,求向量
OB

(2)若向量
AC
與向量
a
共線,常數(shù)k>0,當(dāng)f(θ)=tsinθ取最大值4時(shí),求
OA
OC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
y2
a2
+
x2
b2
=1
的一個(gè)焦點(diǎn)為F(0,2
2
)
,與兩坐標(biāo)軸正半軸分別交于A,B兩點(diǎn)(如圖),向量
AB
與向量
m
=(-1,
2
)
共線.
(1)求橢圓的方程;
(2)若斜率為k的直線過(guò)點(diǎn)C(0,2),且與橢圓交于P,Q兩點(diǎn),求△POC與△QOC面積之比的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案