f(x)=數(shù)學(xué)公式


  1. A.
    奇函數(shù)
  2. B.
    偶函數(shù)
  3. C.
    非奇非偶函數(shù)
  4. D.
    既是奇函數(shù)又是偶函數(shù)
B
分析:當(dāng)x≥0時(shí),f(x)=ex-2,然后檢驗(yàn)f(-x)與f(x)的關(guān)系,當(dāng)x<0時(shí),f(x)=e-x-2,然后檢驗(yàn)f(-x)與f(x)的關(guān)系
解答:當(dāng)x≥0時(shí),f(x)=ex-2,則f(-x)=e-(-x)-2=ex-2=f(x)
當(dāng)x<0時(shí),f(x)=e-x-2,則f(-x)=e-x-2=f(x)
綜上可得,f(x)=f(-x),即函數(shù)f(x)為偶函數(shù)
故選B
點(diǎn)評(píng):本題主要考查了分段函數(shù)的函數(shù)奇偶性的判斷,屬于基本方法的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)試題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù). 當(dāng)a,b∈[-1,1],且a+b≠0時(shí),有
f(a)+f(b)a+b
>0
成立.
(Ⅰ)判斷函f(x)的單調(diào)性,并證明;
(Ⅱ)若f(1)=1,且f(x)≤m2-2bm+1對(duì)所有x∈[-1,1],b∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)(x∈R)的一段圖象如圖所示,f′(x)是函f(x)(數(shù)的導(dǎo)函數(shù),且y=f(x+1)是奇函數(shù),給出以下結(jié)論:
①f(1-x)+f(1+x)=0;
②f′(x)(x-1)≥0;
③f(x)(x-1)≥0;
④f(x)+f(-x)=0
其中一定正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•遂寧二模)設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù),使得對(duì)于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù),現(xiàn)給出下列命題:
①函數(shù)f(x)=(
12
)x
為R上的1高調(diào)函數(shù);
②函數(shù)f (x)=sin 2x為R上的高調(diào)函數(shù);
③如果定義域是[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是[2,+∞);
④如果定義域?yàn)镽的函教f (x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=|x-a2|-a2,且f(x)為R上的4高調(diào)函數(shù),那么實(shí)數(shù)a的取值范圍是[一1,1].
其中正確的命題是
②③④
②③④
 (寫出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知函數(shù)f(x)(x∈R)的一段圖象如圖所示,f′(x)是函f(x)(數(shù)的導(dǎo)函數(shù),且y=f(x+1)是奇函數(shù),給出以下結(jié)論:
①f(1-x)+f(1+x)=0;
②f′(x)(x-1)≥0;
③f(x)(x-1)≥0;
④f(x)+f(-x)=0
其中一定正確的是


  1. A.
    ①③
  2. B.
  3. C.
    ②③
  4. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年山西省晉中市平遙中學(xué)高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知函數(shù)f(x)(x∈R)的一段圖象如圖所示,f′(x)是函f(x)(數(shù)的導(dǎo)函數(shù),且y=f(x+1)是奇函數(shù),給出以下結(jié)論:
①f(1-x)+f(1+x)=0;
②f′(x)(x-1)≥0;
③f(x)(x-1)≥0;
④f(x)+f(-x)=0
其中一定正確的是( )

A.①③
B.②
C.②③
D.①

查看答案和解析>>

同步練習(xí)冊(cè)答案