分析 (1)求出函數(shù)的導數(shù),求得切線的斜率和切點,由點斜式方程可得切線方程;
(2)討論函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)遞增或遞減函數(shù),即f′(x)≥(≤)0在區(qū)間[1,2]上恒成立,然后用分離參數(shù)求最值即可.
解答 解:(1)當a=3時,f(x)=x-2x2+lnx的導數(shù)為f′(x)=1-4x+$\frac{1}{x}$,
在點(1,f(1))處的切線斜率為k=1-4+1=-2,
切點為(1,-1),
即有在點(1,f(1))處的切線方程為y+1=-2(x-1),即為2x+y-1=0;
(2)f′(x)=$\frac{3}{a}$-4x+$\frac{1}{x}$,
若函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)增函數(shù),
則x∈[1,2]時,f′(x)≥0恒成立.
即 $\frac{3}{a}$≥4x-$\frac{1}{x}$在[1,2]恒成立,
令h(x)=4x-$\frac{1}{x}$,因函數(shù)h(x)在[1,2]上單調(diào)遞增,
所以$\frac{3}{a}$≥h(2),即$\frac{3}{a}$≥$\frac{15}{2}$,
解得0<a≤$\frac{2}{5}$①
若函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)減函數(shù),
則x∈[1,2]時,f′(x)≤0恒成立.
即 $\frac{3}{a}$≤4x-$\frac{1}{x}$在[1,2]恒成立,
令h(x)=4x-$\frac{1}{x}$,因函數(shù)h(x)在[1,2]上單調(diào)遞增,
所以$\frac{3}{a}$≤h(1),即$\frac{3}{a}$≤3,
解得a≥1或a<0.②
綜上可得實數(shù)a的取值范圍是a≥1或a≤$\frac{2}{5}$且a≠0.
點評 本題考查利用導數(shù)研究曲線上某點的切線方程和已知函數(shù)單調(diào)性求參數(shù)的范圍,此類問題一般用導數(shù)解決,注意運用恒成立思想,綜合性較強.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | an+bn>cn | B. | an+bn<cn | C. | an+bn≥cn | D. | an+bn≤cn |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {2,3} | B. | {1,2,3,4} | C. | {1,2,3,6} | D. | {-1,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com