過點P(3,0)作一直線l,使它被兩直線l1:2x-y-2=0和l2:x+y+3=0所截的線段AB以P為中點,求此直線l的方程.
考點:待定系數(shù)法求直線方程
專題:直線與圓
分析:(1)當k不存在時,不滿足題意;(2)當k存在時,設(shè)直線l:y=k(x-3),分別聯(lián)立方程組可得A、B坐標,由中點公式可得k的方程,解之可得所求.
解答: 解:(1)當斜率k不存在時,可得直線的方程l:x=3,不滿足題意;
(2)當斜率k存在時,設(shè)直線l:y=k(x-3),
聯(lián)立方程組可得
2x-y-2=0
y=k(x-3)
,解方程組可得A(
2-3k
2-k
,
-4k
2-k
)
,
同理聯(lián)立方程組
x+y+3=0
y=k(x-3)
,解方程組可得B(
3k-3
k+1
,
-6k
k+1
)
,…(6分)
由中點坐標公式得
2-3k
2-k
+
3k-3
k+1
=6
,解得k=8,
∴直線l方程為y=8x-24,化為一般式8x-y-24=0
點評:本題考查直線的一般式方程,涉及待定系數(shù)法求直線的方程和中點公式,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(a-
1
2
)x2-2ax+lnx,a∈R
(Ⅰ)當a=1時,求f(x)在區(qū)間[1,e]上的最大值和最小值;
(Ⅱ)求g(x)=f(x)+ax在x=1處的切線方程;
(Ⅲ)若在區(qū)間(1,+∞)上,f(x)<0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c∈R,a2+2b2+3c2=6,求a+b+c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1的一個焦點為F(2,0),且離心率為
6
3

(Ⅰ)求橢圓方程;
(Ⅱ)過點M(3,0)且斜率為k的直線與橢圓交于A,B兩點,點A關(guān)于x軸的對稱點為C,求△MBC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐E-ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA⊥ED,且AB=4,BC=CD=EA=ED=2.
(Ⅰ)求證:BD⊥平面ADE;
(Ⅱ)求BE和平面CDE所成角的正弦值;
(Ⅲ)在線段CE上是否存在一點F使得平面BDF⊥平面CDE,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,在直角梯形ABCD中,已知AD∥BC,AD=AB=1,∠BAD=90°,∠BCD=45°,E為對角線BD中點.現(xiàn)將△ABD沿BD折起到△PBD的位置,使平面PBD⊥平面BCD,如圖2.
(Ⅰ)求證直線PE⊥平面BCD;
(Ⅱ)求證平面PBC⊥平面PCD;
(Ⅲ)已知空間存在一點Q到點P,B,C,D的距離相等,寫出這個距離的值(不用說明理由).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD與四邊形ADMN都為正方形,AN⊥AB,F(xiàn)為線段BN的中點,E為線段BC上的動點.
(Ⅰ)當E為線段BC中點時,求證:NC∥平面AEF;
(Ⅱ)求證:平面AEF⊥BCMN平面;
(Ⅲ)設(shè)
BE
BC
=λ,寫出λ為何值時MF⊥平面AEF(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>b>c>1,記M=a-
c
,N=a-
b
,P=2(
a+b
2
-
ab
),Q=3(
a+b+c
3
-
3abc
),試找出中的最小者,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下表中的數(shù)陣為“森德拉姆數(shù)篩”,其特點是每行每列都成等差數(shù)列,記第i行第j列的數(shù)為aij,則數(shù)字73在表中出現(xiàn)的次數(shù)為
 

 2 3 4 5 6 7
 3 5 7 9 11 13
 4 7 10 13 16 19
 5 9 13 17 21 25
 6 11 16 21 26 31
 7 13 19 25 31 37

查看答案和解析>>

同步練習(xí)冊答案