若(x+)n(n∈N)的展開(kāi)式中各項(xiàng)系數(shù)的和大于8且小于32,則展開(kāi)式中系數(shù)最大的項(xiàng)應(yīng)是(    )

A.6x           B.3x            C.10x2           D.20x3

答案:A

解析:(x+)n的展開(kāi)式中各項(xiàng)系數(shù)的和為2n.

由8<2n<32,得3<n<5,

故n=4,展開(kāi)式中系數(shù)最大的項(xiàng)為第3項(xiàng),T3=2·()2=6x.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義函數(shù)fn(x)=(1+x)n-1(x>-2,n∈N*)其導(dǎo)函數(shù)記為
f
n
(x)

(Ⅰ)求y=fn(x)-nx的單調(diào)遞增區(qū)間;
(Ⅱ)若
f
n
(x0)
f
n+1
(x0)
=
fn(1)
fn+1(1)
,求證:0<x0<1;
(Ⅲ)設(shè)函數(shù)φ(x)=f3(x)-f2(x),數(shù)列{ak}前k項(xiàng)和為Sk,2kSk=φ(k-1)+2kak,其中a1=1.對(duì)于給定的正整數(shù)n(n≥2),數(shù)列{bn}滿足ak+1bk+1=(k-n)bk(k=1,2…,n-1),且b1=1,求b1+b2+…+bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在D上的函數(shù),若對(duì)D中的任意兩數(shù)x1,x2(x1≠x2),恒有f(
1
3
x1+
2
3
x2
)<
1
3
f(x1)+
2
3
f(x2)
,則稱f(x)為定義在D上的C函數(shù).
(Ⅰ)試判斷函數(shù)f(x)=x2是否為定義域上的C函數(shù),并說(shuō)明理由;
(Ⅱ)若函數(shù)f(x)是R上的奇函數(shù),試證明f(x)不是R上的C函數(shù);
(Ⅲ)設(shè)f(x)是定義在D上的函數(shù),若對(duì)任何實(shí)數(shù)a∈[0,1]以及D中的任意兩數(shù)x1,x2(x1≠x2),恒有f(ax1+(1-a)x2)≤af(x1)+(1-a)f(x2),則稱f(x)為定義在D 上的π函數(shù).已知f(x)是R上的m函數(shù).m是給定的正整數(shù),設(shè)an=f(n),n=0,1,2,…m,且a0=0,am=2m,記Sf=a1+a2+…+am.對(duì)于滿足條件的任意函數(shù)f(x),試求Sf的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•濟(jì)南二模)設(shè)f(x)=
(x+a)lnx
x+1
,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線2x+y+1=0垂直.
(1)求a的值;
(2)若?x∈[1,+∞),f(x)≤m(x-1)恒成立,求m的范圍.
(3)求證:ln
42n+1
n
i=1
i
4i2-1
.(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(x+)n(n∈N)的展開(kāi)式中各項(xiàng)系數(shù)的和大于8且小于32,則展開(kāi)式中系數(shù)最大的項(xiàng)應(yīng)是(    )

A.6x                 B.x             C.10x2                       D.20x3

查看答案和解析>>

同步練習(xí)冊(cè)答案