【題目】如圖是一幾何體的平面展開圖,其中為正方形,分別為的中點,在此幾何體中,給出下面四個結(jié)論:①直線與直線異面;②直線與直線異面;③直線平面;④平面平面;其中正確的是_____.
【答案】②③
【解析】
對①,根據(jù)三角形的中位線定理可得四邊形是平面四邊形,直線與直線共面;對②,由異面直線的定義即可得出;對③,由線面平行的判定定理即可得出;對④,可舉出反例
由展開圖恢復原幾何體如圖所示:
對①,在中,由,,根據(jù)三角形的中位線定理可得,
又,,因此四邊形是梯形,故直線與直線不是異面直線,故①不正確;
對②,由點不在平面內(nèi),直線不經(jīng)過點,根據(jù)異面直線的定義可知:直線與直線異面,故②正確;
對③,由①可知:,平面,平面,直線平面,故③正確;
對④,如圖:假設平面平面.過點作分別交、于點、,在上取一點,連接、、,,又,.若時,必然平面與平面不垂直.故④不一定成立.
綜上可知:只有②③正確.
故答案為:②③
科目:高中數(shù)學 來源: 題型:
【題目】設為實數(shù),已知,
(1)若函數(shù),求的值;
(2)當時,求證:函數(shù)在上是單調(diào)遞增函數(shù);
(3)若對于一切,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷并證明函數(shù)的單調(diào)性;
(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱函數(shù)是上的有界函數(shù),其中稱為函數(shù)的上界.已知函數(shù).
(1)當時,求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請說明理由;
(2)若函數(shù)在上是以3為上界的有界函數(shù),求實數(shù)的取值范圍;
(3)若,函數(shù)在上的上界是,求的解析式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x,且此函數(shù)圖象過點(1,2).
(1)求實數(shù)m的值;
(2)判斷函數(shù)f(x)的奇偶性并證明;
(3)討論函數(shù)f(x)在(0,1)上的單調(diào)性,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,以橢圓的短軸為直徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設橢圓過右焦點的弦為、過原點的弦為,若,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有兩個不透明的箱子,每個箱子都裝有4個完全相同的小球,球上分別標有數(shù)字1,2,3,4.
(1)甲從其中一個箱子中摸出一個球,乙從另一個箱子摸出一個球,誰摸出的球上標的數(shù)字大誰就獲勝(若數(shù)字相同則為平局),求甲獲勝的概率;
(2)摸球方法與(1)同,若規(guī)定:兩人摸到的球上所標數(shù)字相同甲獲勝,所標數(shù)字不相同則乙獲勝,這樣規(guī)定公平嗎?請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓上一點關于直線的對稱點仍在圓上,直線截得圓的弦長為.
(1)求圓的方程;
(2)設是直線上的動點,是圓的兩條切線,為切點,求四邊形面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com